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Creating, Concatenating, and Expanding Matrices
The most basic MATLAB® data structure is the matrix. A matrix is a two-dimensional, rectangular
array of data elements arranged in rows and columns. The elements can be numbers, logical values
(true or false), dates and times, strings, or some other MATLAB data type.

Even a single number is stored as a matrix. For example, a variable containing the value 100 is stored
as a 1-by-1 matrix of type double.

A = 100;
whos A

  Name      Size            Bytes  Class     Attributes

  A         1x1                 8  double              

Constructing a Matrix of Data

If you have a specific set of data, you can arrange the elements in a matrix using square brackets. A
single row of data has spaces or commas in between the elements, and a semicolon separates the
rows. For example, create a single row of four numeric elements. The size of the resulting matrix is 1-
by-4, since it has one row and four columns. A matrix of this shape is often referred to as a row
vector.

A = [12 62 93 -8]

A = 1×4

    12    62    93    -8

sz = size(A)

sz = 1×2

     1     4

Now create a matrix with the same numbers, but arrange them in two rows. This matrix has two rows
and two columns.

A = [12 62; 93 -8]

A = 2×2

    12    62
    93    -8

sz = size(A)

sz = 1×2

     2     2
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Specialized Matrix Functions

MATLAB has many functions that help create matrices with certain values or a particular structure.
For example, the zeros and ones functions create matrices of all zeros or all ones. The first and
second arguments of these functions are the number of rows and number of columns of the matrix,
respectively.

A = zeros(3,2)

A = 3×2

     0     0
     0     0
     0     0

B = ones(2,4)

B = 2×4

     1     1     1     1
     1     1     1     1

The diag function places the input elements on the diagonal of a matrix. For example, create a row
vector A containing four elements. Then, create a 4-by-4 matrix whose diagonal elements are the
elements of A.

A = [12 62 93 -8];
B = diag(A)

B = 4×4

    12     0     0     0
     0    62     0     0
     0     0    93     0
     0     0     0    -8

Concatenating Matrices

You can also use square brackets to join existing matrices together. This way of creating a matrix is
called concatenation. For example, concatenate two row vectors to make an even longer row vector.

A = ones(1,4);
B = zeros(1,4);
C = [A B]

C = 1×8

     1     1     1     1     0     0     0     0

To arrange A and B as two rows of a matrix, use the semicolon.

D = [A;B]

D = 2×4
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     1     1     1     1
     0     0     0     0

To concatenate two matrices, they must have compatible sizes. In other words, when you concatenate
matrices horizontally, they must have the same number of rows. When you concatenate them
vertically, they must have the same number of columns. For example, horizontally concatenate two
matrices that both have two rows.

A = ones(2,3)

A = 2×3

     1     1     1
     1     1     1

B = zeros(2,2)

B = 2×2

     0     0
     0     0

C = [A B]

C = 2×5

     1     1     1     0     0
     1     1     1     0     0

An alternative way to concatenate matrices is to use concatenation functions such as horzcat, which
horizontally concatenates two compatible input matrices.

D = horzcat(A,B)

D = 2×5

     1     1     1     0     0
     1     1     1     0     0

Generating a Numeric Sequence

The colon is a handy way to create matrices whose elements are sequential and evenly spaced. For
example, create a row vector whose elements are the integers from 1 to 10.

A = 1:10

A = 1×10

     1     2     3     4     5     6     7     8     9    10

You can use the colon operator to create a sequence of numbers within any range, incremented by
one.

A = -2.5:2.5
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A = 1×6

   -2.5000   -1.5000   -0.5000    0.5000    1.5000    2.5000

To change the value of the sequence increment, specify the increment value in between the starting
and ending range values, separated by colons.

A = 0:2:10

A = 1×6

     0     2     4     6     8    10

To decrement, use a negative number.

A = 6:-1:0

A = 1×7

     6     5     4     3     2     1     0

You can also increment by noninteger values. If an increment value does not evenly partition the
specified range, MATLAB automatically ends the sequence at the last value it can reach before
exceeding the range.

A = 1:0.2:2.1

A = 1×6

    1.0000    1.2000    1.4000    1.6000    1.8000    2.0000

Expanding a Matrix

You can add one or more elements to a matrix by placing them outside of the existing row and column
index boundaries. MATLAB automatically pads the matrix with zeros to keep it rectangular. For
example, create a 2-by-3 matrix and add an additional row and column to it by inserting an element in
the (3,4) position.

A = [10  20  30; 60  70  80]

A = 2×3

    10    20    30
    60    70    80

A(3,4) = 1 

A = 3×4

    10    20    30     0
    60    70    80     0
     0     0     0     1
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You can also expand the size by inserting a new matrix outside of the existing index ranges.

A(4:5,5:6) = [2 3; 4 5]

A = 5×6

    10    20    30     0     0     0
    60    70    80     0     0     0
     0     0     0     1     0     0
     0     0     0     0     2     3
     0     0     0     0     4     5

To expand the size of a matrix repeatedly, such as within a for loop, it's usually best to preallocate
space for the largest matrix you anticipate creating. Without preallocation, MATLAB has to allocate
memory every time the size increases, slowing down operations. For example, preallocate a matrix
that holds up to 10,000 rows and 10,000 columns by initializing its elements to zero.

A = zeros(10000,10000);

If you need to preallocate additional elements later, you can expand it by assigning outside of the
matrix index ranges or concatenate another preallocated matrix to A.

Empty Arrays

An empty array in MATLAB is an array with at least one dimension length equal to zero. Empty arrays
are useful for representing the concept of "nothing" programmatically. For example, suppose you
want to find all elements of a vector that are less than 0, but there are none. The find function
returns an empty vector of indices, indicating that it couldn't find any elements less than 0.

A = [1 2 3 4];
ind = find(A<0)

ind =

  1x0 empty double row vector

Many algorithms contain function calls that can return empty arrays. It is often useful to allow empty
arrays to flow through these algorithms as function arguments instead of handling them as a special
case. If you do need to customize empty array handling, you can check for them using the isempty
function.

TF = isempty(ind)

TF = logical
   1

See Also

Related Examples
• “Array Indexing” on page 1-21
• “Reshaping and Rearranging Arrays” on page 1-9
• “Multidimensional Arrays” on page 1-14
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• “Create String Arrays”
• “Represent Dates and Times in MATLAB”
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Removing Rows or Columns from a Matrix
The easiest way to remove a row or column from a matrix is to set that row or column equal to a pair
of empty square brackets []. For example, create a 4-by-4 matrix and remove the second row.

A = magic(4)

A = 4×4

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

A(2,:) = []

A = 3×4

    16     2     3    13
     9     7     6    12
     4    14    15     1

Now remove the third column.

A(:,3) = []

A = 3×3

    16     2    13
     9     7    12
     4    14     1

You can extend this approach to any array. For example, create a random 3-by-3-by-3 array and
remove all of the elements in the first matrix of the third dimension.

B = rand(3,3,3);
B(:,:,1) = [];

See Also

Related Examples
• “Reshaping and Rearranging Arrays” on page 1-9
• “Array Indexing” on page 1-21
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Reshaping and Rearranging Arrays
Many functions in MATLAB® can take the elements of an existing array and put them in a different
shape or sequence. This can be helpful for preprocessing your data for subsequent computations or
analyzing the data.

Reshaping

The reshape function changes the size and shape of an array. For example, reshape a 3-by-4 matrix
to a 2-by-6 matrix.

A = [1 4 7 10; 2 5 8 11; 3 6 9 12]

A = 3×4

     1     4     7    10
     2     5     8    11
     3     6     9    12

B = reshape(A,2,6)

B = 2×6

     1     3     5     7     9    11
     2     4     6     8    10    12

As long as the number of elements in each shape are the same, you can reshape them into an array
with any number of dimensions. Using the elements from A, create a 2-by-2-by-3 multidimensional
array.

C = reshape(A,2,2,3)

C = 
C(:,:,1) =

     1     3
     2     4

C(:,:,2) =

     5     7
     6     8

C(:,:,3) =

     9    11
    10    12

Transposing and Flipping

A common task in linear algebra is to work with the transpose of a matrix, which turns the rows into
columns and the columns into rows. To do this, use the transpose function or the .' operator.
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Create a 3-by-3 matrix and compute its transpose.

A = magic(3)

A = 3×3

     8     1     6
     3     5     7
     4     9     2

B = A.'

B = 3×3

     8     3     4
     1     5     9
     6     7     2

A similar operator ' computes the conjugate transpose for complex matrices. This operation
computes the complex conjugate of each element and transposes it. Create a 2-by-2 complex matrix
and compute its conjugate transpose.

A = [1+i 1-i; -i i]

A = 2×2 complex

   1.0000 + 1.0000i   1.0000 - 1.0000i
   0.0000 - 1.0000i   0.0000 + 1.0000i

B = A'

B = 2×2 complex

   1.0000 - 1.0000i   0.0000 + 1.0000i
   1.0000 + 1.0000i   0.0000 - 1.0000i

flipud flips the rows of a matrix in an up-to-down direction, and fliplr flips the columns in a left-
to-right direction.

A = [1 2; 3 4]

A = 2×2

     1     2
     3     4

B = flipud(A)

B = 2×2

     3     4
     1     2

C = fliplr(A)
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C = 2×2

     2     1
     4     3

Shifting and Rotating

You can shift elements of an array by a certain number of positions using the circshift function.
For example, create a 3-by-4 matrix and shift its columns to the right by 2. The second argument [0
2] tells circshift to shift the rows 0 places and shift the columns 2 places to the right.

A = [1 2 3 4; 5 6 7 8; 9 10 11 12]

A = 3×4

     1     2     3     4
     5     6     7     8
     9    10    11    12

B = circshift(A,[0 2])

B = 3×4

     3     4     1     2
     7     8     5     6
    11    12     9    10

To shift the rows of A up by 1 and keep the columns in place, specify the second argument as [-1 0].

C = circshift(A,[-1 0])

C = 3×4

     5     6     7     8
     9    10    11    12
     1     2     3     4

The rot90 function can rotate a matrix counterclockwise by 90 degrees.

A = [1 2; 3 4]

A = 2×2

     1     2
     3     4

B = rot90(A)

B = 2×2

     2     4
     1     3
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If you rotate 3 more times by using the second argument to specify the number of rotations, you end
up with the original matrix A.

C = rot90(B,3)

C = 2×2

     1     2
     3     4

Sorting

Sorting the data in an array is also a valuable tool, and MATLAB offers a number of approaches. For
example, the sort function sorts the elements of each row or column of a matrix separately in
ascending or descending order. Create a matrix A and sort each column of A in ascending order.

A = magic(4)

A = 4×4

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

B = sort(A)

B = 4×4

     4     2     3     1
     5     7     6     8
     9    11    10    12
    16    14    15    13

Sort each row in descending order. The second argument value 2 specifies that you want to sort row-
wise.

C = sort(A,2,'descend')

C = 4×4

    16    13     3     2
    11    10     8     5
    12     9     7     6
    15    14     4     1

To sort entire rows or columns relative to each other, use the sortrows function. For example, sort
the rows of A in ascending order according to the elements in the first column. The positions of the
rows change, but the order of the elements in each row are preserved.

D = sortrows(A) 

D = 4×4

     4    14    15     1
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     5    11    10     8
     9     7     6    12
    16     2     3    13

See Also

Related Examples
• “Removing Rows or Columns from a Matrix” on page 1-8
• “Array Indexing” on page 1-21
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Multidimensional Arrays
A multidimensional array in MATLAB® is an array with more than two dimensions. In a matrix, the
two dimensions are represented by rows and columns.

Each element is defined by two subscripts, the row index and the column index. Multidimensional
arrays are an extension of 2-D matrices and use additional subscripts for indexing. A 3-D array, for
example, uses three subscripts. The first two are just like a matrix, but the third dimension
represents pages or sheets of elements.

Creating Multidimensional Arrays

You can create a multidimensional array by creating a 2-D matrix first, and then extending it. For
example, first define a 3-by-3 matrix as the first page in a 3-D array.

A = [1 2 3; 4 5 6; 7 8 9]

A = 3×3

     1     2     3
     4     5     6
     7     8     9

Now add a second page. To do this, assign another 3-by-3 matrix to the index value 2 in the third
dimension. The syntax A(:,:,2) uses a colon in the first and second dimensions to include all rows
and all columns from the right-hand side of the assignment.

A(:,:,2) = [10 11 12; 13 14 15; 16 17 18]

A = 
A(:,:,1) =
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     1     2     3
     4     5     6
     7     8     9

A(:,:,2) =

    10    11    12
    13    14    15
    16    17    18

The cat function can be a useful tool for building multidimensional arrays. For example, create a new
3-D array B by concatenating A with a third page. The first argument indicates which dimension to
concatenate along.

B = cat(3,A,[3 2 1; 0 9 8; 5 3 7])

B = 
B(:,:,1) =

     1     2     3
     4     5     6
     7     8     9

B(:,:,2) =

    10    11    12
    13    14    15
    16    17    18

B(:,:,3) =

     3     2     1
     0     9     8
     5     3     7

Another way to quickly expand a multidimensional array is by assigning a single element to an entire
page. For example, add a fourth page to B that contains all zeros.

B(:,:,4) = 0

B = 
B(:,:,1) =

     1     2     3
     4     5     6
     7     8     9

B(:,:,2) =

    10    11    12
    13    14    15
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    16    17    18

B(:,:,3) =

     3     2     1
     0     9     8
     5     3     7

B(:,:,4) =

     0     0     0
     0     0     0
     0     0     0

Accessing Elements

To access elements in a multidimensional array, use integer subscripts just as you would for vectors
and matrices. For example, find the 1,2,2 element of A, which is in the first row, second column, and
second page of A.

A

A = 
A(:,:,1) =

     1     2     3
     4     5     6
     7     8     9

A(:,:,2) =

    10    11    12
    13    14    15
    16    17    18

elA = A(1,2,2)

elA = 11

Use the index vector [1 3] in the second dimension to access only the first and last columns of each
page of A.

C = A(:,[1 3],:)

C = 
C(:,:,1) =

     1     3
     4     6
     7     9

C(:,:,2) =
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    10    12
    13    15
    16    18

To find the second and third rows of each page, use the colon operator to create your index vector.

D = A(2:3,:,:)

D = 
D(:,:,1) =

     4     5     6
     7     8     9

D(:,:,2) =

    13    14    15
    16    17    18

Manipulating Arrays

Elements of multidimensional arrays can be moved around in many ways, similar to vectors and
matrices. reshape, permute, and squeeze are useful functions for rearranging elements. Consider
a 3-D array with two pages.

Reshaping a multidimensional array can be useful for performing certain operations or visualizing the
data. Use the reshape function to rearrange the elements of the 3-D array into a 6-by-5 matrix.

A = [1 2 3 4 5; 9 0 6 3 7; 8 1 5 0 2];
A(:,:,2) = [9 7 8 5 2; 3 5 8 5 1; 6 9 4 3 3];
B = reshape(A,[6 5])

B = 6×5

     1     3     5     7     5
     9     6     7     5     5
     8     5     2     9     3
     2     4     9     8     2
     0     3     3     8     1
     1     0     6     4     3

reshape operates columnwise, creating the new matrix by taking consecutive elements down each
column of A, starting with the first page then moving to the second page.

Permutations are used to rearrange the order of the dimensions of an array. Consider a 3-D array M.
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M(:,:,1) = [1 2 3; 4 5 6; 7 8 9];
M(:,:,2) = [0 5 4; 2 7 6; 9 3 1]

M = 
M(:,:,1) =

     1     2     3
     4     5     6
     7     8     9

M(:,:,2) =

     0     5     4
     2     7     6
     9     3     1

Use the permute function to interchange row and column subscripts on each page by specifying the
order of dimensions in the second argument. The original rows of M are now columns, and the
columns are now rows.

P1 = permute(M,[2 1 3])

P1 = 
P1(:,:,1) =

     1     4     7
     2     5     8
     3     6     9

P1(:,:,2) =

     0     2     9
     5     7     3
     4     6     1

Similarly, interchange row and page subscripts of M.

P2 = permute(M,[3 2 1])

P2 = 
P2(:,:,1) =

     1     2     3
     0     5     4

P2(:,:,2) =

     4     5     6
     2     7     6

P2(:,:,3) =

     7     8     9

1 Matrices and Arrays

1-18



     9     3     1

When working with multidimensional arrays, you might encounter one that has an unnecessary
dimension of length 1. The squeeze function performs another type of manipulation that eliminates
dimensions of length 1. For example, use the repmat function to create a 2-by-3-by-1-by-4 array
whose elements are each 5, and whose third dimension has length 1.

A = repmat(5,[2 3 1 4])

A = 
A(:,:,1,1) =

     5     5     5
     5     5     5

A(:,:,1,2) =

     5     5     5
     5     5     5

A(:,:,1,3) =

     5     5     5
     5     5     5

A(:,:,1,4) =

     5     5     5
     5     5     5

szA = size(A)

szA = 1×4

     2     3     1     4

numdimsA = ndims(A)

numdimsA = 4

Use the squeeze function to remove the third dimension, resulting in a 3-D array.

B = squeeze(A)

B = 
B(:,:,1) =

     5     5     5
     5     5     5

B(:,:,2) =
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     5     5     5
     5     5     5

B(:,:,3) =

     5     5     5
     5     5     5

B(:,:,4) =

     5     5     5
     5     5     5

szB = size(B)

szB = 1×3

     2     3     4

numdimsB = ndims(B)

numdimsB = 3

See Also

Related Examples
• “Creating, Concatenating, and Expanding Matrices” on page 1-2
• “Array Indexing” on page 1-21
• “Reshaping and Rearranging Arrays” on page 1-9
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Array Indexing
In MATLAB®, there are three primary approaches to accessing array elements based on their
location (index) in the array. These approaches are indexing by position, linear indexing, and logical
indexing.

Indexing with Element Positions

The most common way is to explicitly specify the indices of the elements. For example, to access a
single element of a matrix, specify the row number followed by the column number of the element.

A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

A = 4×4

     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

e = A(3,2)

e = 10

e is the element in the 3,2 position (third row, second column) of A.

You can also reference multiple elements at a time by specifying their indices in a vector. For
example, access the first and third elements of the second row of A.

r = A(2,[1 3])

r = 1×2

     5     7

To access elements in a range of rows or columns, use the colon. For example, access the elements
in the first through third row and the second through fourth column of A.

r = A(1:3,2:4)

r = 3×3

     2     3     4
     6     7     8
    10    11    12

An alternative way to compute r is to use the keyword end to specify the second column through the
last column. This approach lets you specify the last column without knowing exactly how many
columns are in A.

r = A(1:3,2:end)

r = 3×3

     2     3     4
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     6     7     8
    10    11    12

If you want to access all of the rows or columns, use the colon operator by itself. For example, return
the entire third column of A.

r = A(:,3)

r = 4×1

     3
     7
    11
    15

In general, you can use indexing to access elements of any array in MATLAB regardless of its data
type or dimensions. For example, directly access a column of a datetime array.

t = [datetime(2018,1:5,1); datetime(2019,1:5,1)]

t = 2x5 datetime
   01-Jan-2018   01-Feb-2018   01-Mar-2018   01-Apr-2018   01-May-2018
   01-Jan-2019   01-Feb-2019   01-Mar-2019   01-Apr-2019   01-May-2019

march1 = t(:,3)

march1 = 2x1 datetime
   01-Mar-2018
   01-Mar-2019

For higher-dimensional arrays, expand the syntax to match the array dimensions. Consider a random
3-by-3-by-3 numeric array. Access the element in the second row, third column, and first sheet of the
array.

A = rand(3,3,3);
e = A(2,3,1)

e = 0.5469

For more information on working with multidimensional arrays, see “Multidimensional Arrays” on
page 1-14.

Indexing with a Single Index

Another method for accessing elements of an array is to use only a single index, regardless of the size
or dimensions of the array. This method is known as linear indexing. While MATLAB displays arrays
according to their defined sizes and shapes, they are actually stored in memory as a single column of
elements. A good way to visualize this concept is with a matrix. While the following array is displayed
as a 3-by-3 matrix, MATLAB stores it as a single column made up of the columns of A appended one
after the other. The stored vector contains the sequence of elements 12, 45, 33, 36, 29, 25, 91, 48,
11, and can be displayed using a single colon.

A = [12 36 91; 45 29 48; 33 25 11]
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A = 3×3

    12    36    91
    45    29    48
    33    25    11

Alinear = A(:)

Alinear = 9×1

    12
    45
    33
    36
    29
    25
    91
    48
    11

For example, the 3,2 element of A is 25, and you can access it using the syntax A(3,2). You can also
access this element using the syntax A(6), since 25 is sixth element of the stored vector sequence.

e = A(3,2)

e = 25

elinear = A(6)

elinear = 25

While linear indexing can be less intuitive visually, it can be powerful for performing certain
computations that are not dependent on the size or shape of the array. For example, you can easily
sum all of the elements of A without having to provide a second argument to the sum function.

s = sum(A(:))

s = 330

The sub2ind and ind2sub functions help to convert between original array indices and their linear
version. For example, compute the linear index of the 3,2 element of A.

linearidx = sub2ind(size(A),3,2)

linearidx = 6

Convert from the linear index back to its row and column form.

[row,col] = ind2sub(size(A),6)

row = 3

col = 2

Indexing with Logical Values

Using true and false logical indicators is another useful way to index into arrays, particularly when
working with conditional statements. For example, say you want to know if the elements of a matrix A
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are less than the corresponding elements of another matrix B. The less-than operator returns a
logical array whose elements are 1 when an element in A is smaller than the corresponding element
in B.

A = [1 2 6; 4 3 6]

A = 2×3

     1     2     6
     4     3     6

B = [0 3 7; 3 7 5]

B = 2×3

     0     3     7
     3     7     5

ind = A<B

ind = 2x3 logical array

   0   1   1
   0   1   0

Now that you know the locations of the elements meeting the condition, you can inspect the
individual values using ind as the index array. MATLAB matches the locations of the value 1 in ind to
the corresponding elements of A and B, and lists their values in a column vector.

Avals = A(ind)

Avals = 3×1

     2
     3
     6

Bvals = B(ind)

Bvals = 3×1

     3
     7
     7

MATLAB "is" functions also return logical arrays that indicate which elements of the input meet a
certain condition. For example, check which elements of a string vector are missing using the
ismissing function.

str = ["A" "B" missing "D" "E" missing];
ind = ismissing(str)

ind = 1x6 logical array
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   0   0   1   0   0   1

Suppose you want to find the values of the elements that are not missing. Use the ~ operator with the
index vector ind to do this.

strvals = str(~ind)

strvals = 1x4 string
    "A"    "B"    "D"    "E"

For more examples using logical indexing, see “Find Array Elements That Meet a Condition”.

See Also

Related Examples
• “Access Data Using Categorical Arrays”
• “Access Data in Tables”
• “Access Data in Structure Array”
• “Access Data in Cell Array”

 Array Indexing

1-25





Linear Algebra

• “Matrices in the MATLAB Environment” on page 2-2
• “Systems of Linear Equations” on page 2-10
• “Factorizations” on page 2-20
• “Powers and Exponentials” on page 2-26
• “Eigenvalues” on page 2-30
• “Singular Values” on page 2-33
• “LAPACK in MATLAB” on page 2-37
• “Matrix Exponentials” on page 2-38
• “Graphical Comparison of Exponential Functions” on page 2-42
• “Basic Matrix Operations” on page 2-46
• “Determine Whether Matrix Is Symmetric Positive Definite” on page 2-54
• “Image Compression with Low-Rank SVD” on page 2-56
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Matrices in the MATLAB Environment
This topic contains an introduction to creating matrices and performing basic matrix calculations in
MATLAB.

The MATLAB environment uses the term matrix to indicate a variable containing real or complex
numbers arranged in a two-dimensional grid. An array is, more generally, a vector, matrix, or higher
dimensional grid of numbers. All arrays in MATLAB are rectangular, in the sense that the component
vectors along any dimension are all the same length. The mathematical operations defined on
matrices are the subject of linear algebra.

Creating Matrices
MATLAB has many functions that create different kinds of matrices. For example, you can create a
symmetric matrix with entries based on Pascal's triangle:

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6

Or, you can create an unsymmetric magic square matrix, which has equal row and column sums:

B = magic(3)

B =
       8     1     6
       3     5     7
       4     9     2

Another example is a 3-by-2 rectangular matrix of random integers. In this case the first input to
randi describes the range of possible values for the integers, and the second two inputs describe the
number of rows and columns.

C = randi(10,3,2)

C =

     9    10
    10     7
     2     1

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a scalar is a 1-by-1 matrix.
To define a matrix manually, use square brackets [ ] to denote the beginning and end of the array.
Within the brackets, use a semicolon ; to denote the end of a row. In the case of a scalar (1-by-1
matrix), the brackets are not required. For example, these statements produce a column vector, a row
vector, and a scalar:

u = [3; 1; 4]

v = [2 0 -1]

s = 7

2 Linear Algebra

2-2



u =
       3
       1
       4

v =
       2     0    -1

s =
       7

For more information about creating and working with matrices, see “Creating, Concatenating, and
Expanding Matrices” on page 1-2.

Adding and Subtracting Matrices
Addition and subtraction of matrices and arrays is performed element-by-element, or element-wise.
For example, adding A to B and then subtracting A from the result recovers B:

X = A + B

X =
       9     2     7
       4     7    10
       5    12     8

Y = X - A

Y =
       8     1     6
       3     5     7
       4     9     2

Addition and subtraction require both matrices to have compatible dimensions. If the dimensions are
incompatible, an error results:

X = A + C

Error using  + 
Matrix dimensions must agree.

For more information, see “Array vs. Matrix Operations”.

Vector Products and Transpose
A row vector and a column vector of the same length can be multiplied in either order. The result is
either a scalar, called the inner product, or a matrix, called the outer product:

u = [3; 1; 4];
v = [2 0 -1];
x = v*u

x =

     2

X = u*v
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X =

     6     0    -3
     2     0    -1
     8     0    -4

For real matrices, the transpose operation interchanges aij and aji. For complex matrices, another
consideration is whether to take the complex conjugate of complex entries in the array to form the
complex conjugate transpose. MATLAB uses the apostrophe operator (') to perform a complex
conjugate transpose, and the dot-apostrophe operator (.') to transpose without conjugation. For
matrices containing all real elements, the two operators return the same result.

The example matrix A = pascal(3) is symmetric, so A' is equal to A. However, B = magic(3) is
not symmetric, so B' has the elements reflected along the main diagonal:

B = magic(3)

B =

     8     1     6
     3     5     7
     4     9     2

X = B'

X =

     8     3     4
     1     5     9
     6     7     2

For vectors, transposition turns a row vector into a column vector (and vice-versa):

x = v'

x =
       2
       0
      -1

If x and y are both real column vectors, then the product x*y is not defined, but the two products

x'*y

and

y'*x

produce the same scalar result. This quantity is used so frequently, it has three different names: inner
product, scalar product, or dot product. There is even a dedicated function for dot products named
dot.

For a complex vector or matrix, z, the quantity z' not only transposes the vector or matrix, but also
converts each complex element to its complex conjugate. That is, the sign of the imaginary part of
each complex element changes. For example, consider the complex matrix

z = [1+2i 7-3i 3+4i; 6-2i 9i 4+7i]
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z =

   1.0000 + 2.0000i   7.0000 - 3.0000i   3.0000 + 4.0000i
   6.0000 - 2.0000i   0.0000 + 9.0000i   4.0000 + 7.0000i

The complex conjugate transpose of z is:

z'

ans =

   1.0000 - 2.0000i   6.0000 + 2.0000i
   7.0000 + 3.0000i   0.0000 - 9.0000i
   3.0000 - 4.0000i   4.0000 - 7.0000i

The unconjugated complex transpose, where the complex part of each element retains its sign, is
denoted by z.':

z.'

ans =

   1.0000 + 2.0000i   6.0000 - 2.0000i
   7.0000 - 3.0000i   0.0000 + 9.0000i
   3.0000 + 4.0000i   4.0000 + 7.0000i

For complex vectors, the two scalar products x'*y and y'*x are complex conjugates of each other,
and the scalar product x'*x of a complex vector with itself is real.

Multiplying Matrices
Multiplication of matrices is defined in a way that reflects composition of the underlying linear
transformations and allows compact representation of systems of simultaneous linear equations. The
matrix product C = AB is defined when the column dimension of A is equal to the row dimension of B,
or when one of them is a scalar. If A is m-by-p and B is p-by-n, their product C is m-by-n. The product
can actually be defined using MATLAB for loops, colon notation, and vector dot products:

A = pascal(3);
B = magic(3);
m = 3; 
n = 3;
for i = 1:m
     for j = 1:n
        C(i,j) = A(i,:)*B(:,j);
     end
end

MATLAB uses an asterisk to denote matrix multiplication, as in C = A*B. Matrix multiplication is not
commutative; that is, A*B is typically not equal to B*A:

X = A*B

X =
      15    15    15
      26    38    26
      41    70    39

Y = B*A
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Y =
      15    28    47
      15    34    60
      15    28    43

A matrix can be multiplied on the right by a column vector and on the left by a row vector:

u = [3; 1; 4];
x = A*u

x =

     8
    17
    30

v = [2 0 -1];
y = v*B

y =

    12    -7    10

Rectangular matrix multiplications must satisfy the dimension compatibility conditions. Since A is 3-
by-3 and C is 3-by-2, you can multiply them to get a 3-by-2 result (the common inner dimension
cancels):

X = A*C

X =

    24    17
    47    42
    79    77

However, the multiplication does not work in the reverse order:

Y = C*A

Error using  * 
Incorrect dimensions for matrix multiplication. Check that the number of columns 
in the first matrix matches the number of rows in the second matrix. To perform 
elementwise multiplication, use '.*'.

You can multiply anything with a scalar:

s = 10;
w = s*y

w =

   120   -70   100

When you multiply an array by a scalar, the scalar implicitly expands to be the same size as the other
input. This is often referred to as scalar expansion.
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Identity Matrix
Generally accepted mathematical notation uses the capital letter I to denote identity matrices,
matrices of various sizes with ones on the main diagonal and zeros elsewhere. These matrices have
the property that AI = A and IA = A whenever the dimensions are compatible.

The original version of MATLAB could not use I for this purpose because it did not distinguish
between uppercase and lowercase letters and i already served as a subscript and as the complex unit.
So an English language pun was introduced. The function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n square identity matrix.

Matrix Inverse
If a matrix A is square and nonsingular (nonzero determinant), then the equations AX = I and XA = I
have the same solution X. This solution is called the inverse of A and is denoted A-1. The inv function
and the expression A^-1 both compute the matrix inverse.

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6

X = inv(A)

X =

    3.0000   -3.0000    1.0000
   -3.0000    5.0000   -2.0000
    1.0000   -2.0000    1.0000

A*X

ans =

    1.0000         0         0
    0.0000    1.0000   -0.0000
   -0.0000    0.0000    1.0000

The determinant calculated by det is a measure of the scaling factor of the linear transformation
described by the matrix. When the determinant is exactly zero, the matrix is singular and no inverse
exists.

d = det(A)

d =

     1

Some matrices are nearly singular, and despite the fact that an inverse matrix exists, the calculation
is susceptible to numerical errors. The cond function computes the condition number for inversion,
which gives an indication of the accuracy of the results from matrix inversion. The condition number
ranges from 1 for a numerically stable matrix to Inf for a singular matrix.
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c = cond(A)

c =

   61.9839

It is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv arises when
solving the system of linear equations Ax = b. The best way to solve this equation, from the
standpoint of both execution time and numerical accuracy, is to use the matrix backslash operator x
= A\b. See mldivide for more information.

Kronecker Tensor Product
The Kronecker product, kron(X,Y), of two matrices is the larger matrix formed from all possible
products of the elements of X with those of Y. If X is m-by-n and Y is p-by-q, then kron(X,Y) is mp-
by-nq. The elements are arranged such that each element of X is multiplied by the entire matrix Y:

[X(1,1)*Y  X(1,2)*Y  . . .  X(1,n)*Y
                     . . .
 X(m,1)*Y  X(m,2)*Y  . . .  X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build up repeated copies of
small matrices. For example, if X is the 2-by-2 matrix

X = [1   2
     3   4]

and I = eye(2,2) is the 2-by-2 identity matrix, then:

kron(X,I)

ans =

     1     0     2     0
     0     1     0     2
     3     0     4     0
     0     3     0     4

and

kron(I,X)

ans =

     1     2     0     0
     3     4     0     0
     0     0     1     2
     0     0     3     4

Aside from kron, some other functions that are useful to replicate arrays are repmat, repelem, and
blkdiag.

Vector and Matrix Norms
The p-norm of a vector x,
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x p = ∑ xi
p 1 p ,

is computed by norm(x,p). This operation is defined for any value of p > 1, but the most common
values of p are 1, 2, and ∞. The default value is p = 2, which corresponds to Euclidean length or
vector magnitude:

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]

ans =

    3.0000    2.2361    2.0000

The p-norm of a matrix A,

A p = max
x

Ax p
x p

,

can be computed for p = 1, 2, and ∞ by norm(A,p). Again, the default value is p = 2:

A = pascal(3);
[norm(A,1) norm(A) norm(A,inf)]

ans =

   10.0000    7.8730   10.0000

In cases where you want to calculate the norm of each row or column of a matrix, you can use
vecnorm:

vecnorm(A)

ans =

    1.7321    3.7417    6.7823

Using Multithreaded Computation with Linear Algebra Functions
MATLAB supports multithreaded computation for a number of linear algebra and element-wise
numerical functions. These functions automatically execute on multiple threads. For a function or
expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently.
These sections must be able to execute with little communication between processes. They
should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time
required to partition the data and manage separate execution threads. For example, most
functions speed up only when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As
a general rule, complicated functions speed up more than simple functions.

The matrix multiply (X*Y) and matrix power (X^p) operators show significant increase in speed on
large double-precision arrays (on order of 10,000 elements). The matrix analysis functions det,
rcond, hess, and expm also show significant increase in speed on large double-precision arrays.
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Systems of Linear Equations
In this section...
“Computational Considerations” on page 2-10
“General Solution” on page 2-11
“Square Systems” on page 2-11
“Overdetermined Systems” on page 2-13
“Underdetermined Systems” on page 2-15
“Solving for Several Right-Hand Sides” on page 2-17
“Iterative Methods” on page 2-18
“Multithreaded Computation” on page 2-18

Computational Considerations
One of the most important problems in technical computing is the solution of systems of simultaneous
linear equations.

In matrix notation, the general problem takes the following form: Given two matrices A and b, does
there exist a unique matrix x, so that Ax= b or xA= b?

It is instructive to consider a 1-by-1 example. For example, does the equation

7x = 21

have a unique solution?

The answer, of course, is yes. The equation has the unique solution x = 3. The solution is easily
obtained by division:

x = 21/7 = 3.

The solution is not ordinarily obtained by computing the inverse of 7, that is 7–1= 0.142857..., and
then multiplying 7–1 by 21. This would be more work and, if 7–1 is represented to a finite number of
digits, less accurate. Similar considerations apply to sets of linear equations with more than one
unknown; MATLAB solves such equations without computing the inverse of the matrix.

Although it is not standard mathematical notation, MATLAB uses the division terminology familiar in
the scalar case to describe the solution of a general system of simultaneous equations. The two
division symbols, slash, /, and backslash, \, correspond to the two MATLAB functions mrdivide and
mldivide. These operators are used for the two situations where the unknown matrix appears on the
left or right of the coefficient matrix:

x = b/A Denotes the solution to the matrix equation xA = b, obtained using
mrdivide.

x = A\b Denotes the solution to the matrix equation Ax = b, obtained using
mldivide.

Think of “dividing” both sides of the equation Ax = b or xA = b by A. The coefficient matrix A is
always in the “denominator.”
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The dimension compatibility conditions for x = A\b require the two matrices A and b to have the
same number of rows. The solution x then has the same number of columns as b and its row
dimension is equal to the column dimension of A. For x = b/A, the roles of rows and columns are
interchanged.

In practice, linear equations of the form Ax = b occur more frequently than those of the form xA = b.
Consequently, the backslash is used far more frequently than the slash. The remainder of this section
concentrates on the backslash operator; the corresponding properties of the slash operator can be
inferred from the identity:

(b/A)' = (A'\b').

The coefficient matrix A need not be square. If A has size m-by-n, then there are three cases:

m = n Square system. Seek an exact solution.
m > n Overdetermined system, with more equations than unknowns. Find a

least-squares solution.
m < n Underdetermined system, with fewer equations than unknowns. Find

a basic solution with at most m nonzero components.

The mldivide Algorithm

The mldivide operator employs different solvers to handle different kinds of coefficient matrices.
The various cases are diagnosed automatically by examining the coefficient matrix. For more
information, see the “Algorithms” section of the mldivide reference page.

General Solution
The general solution to a system of linear equations Ax= b describes all possible solutions. You can
find the general solution by:

1 Solving the corresponding homogeneous system Ax = 0. Do this using the null command, by
typing null(A). This returns a basis for the solution space to Ax = 0. Any solution is a linear
combination of basis vectors.

2 Finding a particular solution to the nonhomogeneous system Ax =b.

You can then write any solution to Ax= b as the sum of the particular solution to Ax =b, from step 2,
plus a linear combination of the basis vectors from step 1.

The rest of this section describes how to use MATLAB to find a particular solution to Ax =b, as in step
2.

Square Systems
The most common situation involves a square coefficient matrix A and a single right-hand side column
vector b.

Nonsingular Coefficient Matrix

If the matrix A is nonsingular, then the solution, x = A\b, is the same size as b. For example:

A = pascal(3);
u = [3; 1; 4];
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x = A\u

x =
      10
     -12
       5

It can be confirmed that A*x is exactly equal to u.

If A and b are square and the same size, x= A\b is also that size:

b = magic(3);
X = A\b

X =
      19    -3    -1
     -17     4    13
       6     0    -6

It can be confirmed that A*x is exactly equal to b.

Both of these examples have exact, integer solutions. This is because the coefficient matrix was
chosen to be pascal(3), which is a full rank matrix (nonsingular).

Singular Coefficient Matrix

A square matrix A is singular if it does not have linearly independent columns. If A is singular, the
solution to Ax = b either does not exist, or is not unique. The backslash operator, A\b, issues a
warning if A is nearly singular or if it detects exact singularity.

If A is singular and Ax = b has a solution, you can find a particular solution that is not unique, by
typing

P = pinv(A)*b

pinv(A) is a pseudoinverse of A. If Ax = b does not have an exact solution, then pinv(A) returns a
least-squares solution.

For example:

A = [ 1     3     7
     -1     4     4
      1    10    18 ]

is singular, as you can verify by typing

rank(A)

ans =

     2

Since A is not full rank, it has some singular values equal to zero.

Exact Solutions. For b =[5;2;12], the equation Ax = b has an exact solution, given by

pinv(A)*b
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ans =
    0.3850
   -0.1103
    0.7066

Verify that pinv(A)*b is an exact solution by typing

A*pinv(A)*b

ans =
    5.0000
    2.0000
   12.0000

Least-Squares Solutions. However, if b = [3;6;0], Ax = b does not have an exact solution. In this
case, pinv(A)*b returns a least-squares solution. If you type

A*pinv(A)*b

ans =
   -1.0000
    4.0000
    2.0000

you do not get back the original vector b.

You can determine whether Ax =b has an exact solution by finding the row reduced echelon form of
the augmented matrix [A b]. To do so for this example, enter

rref([A b])
ans =
    1.0000         0    2.2857         0
         0    1.0000    1.5714         0
         0         0         0    1.0000

Since the bottom row contains all zeros except for the last entry, the equation does not have a
solution. In this case, pinv(A) returns a least-squares solution.

Overdetermined Systems
This example shows how overdetermined systems are often encountered in various kinds of curve
fitting to experimental data.

A quantity y is measured at several different values of time t to produce the following observations.
You can enter the data and view it in a table with the following statements.

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';
B = table(t,y)

B=6×2 table
     t      y  
    ___    ____

      0    0.82
    0.3    0.72
    0.8    0.63
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    1.1     0.6
    1.6    0.55
    2.3     0.5

Try modeling the data with a decaying exponential function

y(t) = c1 + c2e−t.

The preceding equation says that the vector y should be approximated by a linear combination of two
other vectors. One is a constant vector containing all ones and the other is the vector with
components exp(-t). The unknown coefficients, c1 and c2, can be computed by doing a least-squares
fit, which minimizes the sum of the squares of the deviations of the data from the model. There are
six equations in two unknowns, represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E = 6×2

    1.0000    1.0000
    1.0000    0.7408
    1.0000    0.4493
    1.0000    0.3329
    1.0000    0.2019
    1.0000    0.1003

Use the backslash operator to get the least-squares solution.

c = E\y

c = 2×1

    0.4760
    0.3413

In other words, the least-squares fit to the data is

y(t) = 0 . 4760 + 0 . 3413e−t .

The following statements evaluate the model at regularly spaced increments in t, and then plot the
result together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')
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E*c is not exactly equal to y, but the difference might well be less than measurement errors in the
original data.

A rectangular matrix A is rank deficient if it does not have linearly independent columns. If A is rank
deficient, then the least-squares solution to AX = B is not unique. A\B issues a warning if A is rank
deficient and produces a least-squares solution. You can use lsqminnorm to find the solution X that
has the minimum norm among all solutions.

Underdetermined Systems
This example shows how the solution to underdetermined systems is not unique. Underdetermined
linear systems involve more unknowns than equations. The matrix left division operation in MATLAB
finds a basic least-squares solution, which has at most m nonzero components for an m-by-n coefficient
matrix.

Here is a small, random example:

R = [6 8 7 3; 3 5 4 1]
rng(0);
b = randi(8,2,1)

R =

       6              8              7              3       
       3              5              4              1       
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b =

       7       
       8      

The linear system Rp = b involves two equations in four unknowns. Since the coefficient matrix
contains small integers, it is appropriate to use the format command to display the solution in
rational format. The particular solution is obtained with

format rat
p = R\b

p =

       0       
      17/7     
       0       
     -29/7    

One of the nonzero components is p(2) because R(:,2) is the column of R with largest norm. The
other nonzero component is p(4) because R(:,4) dominates after R(:,2) is eliminated.

The complete general solution to the underdetermined system can be characterized by adding p to an
arbitrary linear combination of the null space vectors, which can be found using the null function
with an option requesting a rational basis.

Z = null(R,'r')

Z =

      -1/2           -7/6     
      -1/2            1/2     
       1              0       
       0              1       

It can be confirmed that R*Z is zero and that the residual R*x - b is small for any vector x, where

x = p + Z*q

Since the columns of Z are the null space vectors, the product Z*q is a linear combination of those
vectors:

Zq = x 1 x 2
u
w

= ux 1 + wx 2 .

To illustrate, choose an arbitrary q and construct x.

q = [-2; 1];
x = p + Z*q;

Calculate the norm of the residual.

format short
norm(R*x - b)
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ans =

   2.6645e-15

When infinitely many solutions are available, the solution with minimum norm is of particular
interest. You can use lsqminnorm to compute the minimum-norm least-squares solution. This
solution has the smallest possible value for norm(p).

p = lsqminnorm(R,b)

p =

    -207/137   
     365/137   
      79/137   
    -424/137  

Solving for Several Right-Hand Sides
Some problems are concerned with solving linear systems that have the same coefficient matrix A,
but different right-hand sides b. When the different values of b are available at the same time, you
can construct b as a matrix with several columns and solve all of the systems of equations at the same
time using a single backslash command: X = A\[b1 b2 b3 …].

However, sometimes the different values of b are not all available at the same time, which means you
need to solve several systems of equations consecutively. When you solve one of these systems of
equations using slash (/) or backslash (\), the operator factorizes the coefficient matrix A and uses this
matrix decomposition to compute the solution. However, each subsequent time you solve a similar
system of equations with a different b, the operator computes the same decomposition of A, which is
a redundant computation.

The solution to this problem is to precompute the decomposition of A, and then reuse the factors to
solve for the different values of b. In practice, however, precomputing the decomposition in this
manner can be difficult since you need to know which decomposition to compute (LU, LDL, Cholesky,
and so on) as well as how to multiply the factors to solve the problem. For example, with LU
decomposition you need to solve two linear systems to solve the original system Ax = b:

[L,U] = lu(A);
x = U \ (L \ b);

Instead, the recommended method for solving linear systems with several consecutive right-hand
sides is to use decomposition objects. These objects enable you to leverage the performance
benefits of precomputing the matrix decomposition, but they do not require knowledge of how to use
the matrix factors. You can replace the previous LU decomposition with:

dA = decomposition(A,'lu');
x = dA\b;

If you are unsure which decomposition to use, decomposition(A) chooses the correct type based
on the properties of A, similar to what backslash does.

Here is a simple test of the possible performance benefits of this approach. The test solves the same
sparse linear system 100 times using both backslash (\) and decomposition.

n = 1e3;
A = sprand(n,n,0.2) + speye(n);
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b = ones(n,1);

% Backslash solution
tic
for k = 1:100
    x = A\b;
end
toc

Elapsed time is 9.006156 seconds.

% decomposition solution
tic
dA = decomposition(A);
for k = 1:100
    x = dA\b;
end
toc

Elapsed time is 0.374347 seconds.

For this problem, the decomposition solution is much faster than using backslash alone, yet the
syntax remains simple.

Iterative Methods
If the coefficient matrix A is large and sparse, factorization methods are generally not efficient.
Iterative methods generate a series of approximate solutions. MATLAB provides several iterative
methods to handle large, sparse input matrices.

Function Description
pcg Preconditioned conjugate gradients method. This method is appropriate

for Hermitian positive definite coefficient matrix A.
bicg BiConjugate Gradients Method
bicgstab BiConjugate Gradients Stabilized Method
bicgstabl BiCGStab(l) Method
cgs Conjugate Gradients Squared Method
gmres Generalized Minimum Residual Method
lsqr LSQR Method
minres Minimum Residual Method. This method is appropriate for Hermitian

coefficient matrix A.
qmr Quasi-Minimal Residual Method
symmlq Symmetric LQ Method
tfqmr Transpose-Free QMR Method

Multithreaded Computation
MATLAB supports multithreaded computation for a number of linear algebra and element-wise
numerical functions. These functions automatically execute on multiple threads. For a function or
expression to execute faster on multiple CPUs, a number of conditions must be true:
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1 The function performs operations that easily partition into sections that execute concurrently.
These sections must be able to execute with little communication between processes. They
should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time
required to partition the data and manage separate execution threads. For example, most
functions speed up only when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As
a general rule, complicated functions speed up more than simple functions.

inv, lscov, linsolve, and mldivide show significant increase in speed on large double-precision
arrays (on order of 10,000 elements or more) when multithreading is enabled.

 Systems of Linear Equations

2-19



Factorizations
In this section...
“Introduction” on page 2-20
“Cholesky Factorization” on page 2-20
“LU Factorization” on page 2-21
“QR Factorization” on page 2-22
“Using Multithreaded Computation for Factorization” on page 2-25

Introduction
All three of the matrix factorizations discussed in this section make use of triangular matrices, where
all the elements either above or below the diagonal are zero. Systems of linear equations involving
triangular matrices are easily and quickly solved using either forward or back substitution.

Cholesky Factorization
The Cholesky factorization expresses a symmetric matrix as the product of a triangular matrix and its
transpose

A = R′R,

where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have such a factorization
are said to be positive definite. This implies that all the diagonal elements of A are positive and that
the off-diagonal elements are “not too big.” The Pascal matrices provide an interesting example.
Throughout this chapter, the example matrix A has been the 3-by-3 Pascal matrix. Temporarily switch
to the 6-by-6:

A = pascal(6)

A =
       1     1     1     1     1     1
       1     2     3     4     5     6
       1     3     6    10    15    21
       1     4    10    20    35    56
       1     5    15    35    70   126
       1     6    21    56   126   252

The elements of A are binomial coefficients. Each element is the sum of its north and west neighbors.
The Cholesky factorization is

R = chol(A)

R =
     1     1     1     1     1     1
     0     1     2     3     4     5
     0     0     1     3     6    10
     0     0     0     1     4    10
     0     0     0     0     1     5
     0     0     0     0     0     1
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The elements are again binomial coefficients. The fact that R'*R is equal to A demonstrates an
identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any complex matrix that has a
Cholesky factorization satisfies

A′ = A

and is said to be Hermitian positive definite.

The Cholesky factorization allows the linear system

Ax = b

to be replaced by

R′Rx = b.

Because the backslash operator recognizes triangular systems, this can be solved in the MATLAB
environment quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the complexity of the subsequent
backslash solutions is only O(n2).

LU Factorization
LU factorization, or Gaussian elimination, expresses any square matrix A as the product of a
permutation of a lower triangular matrix and an upper triangular matrix

A = LU,

where L is a permutation of a lower triangular matrix with ones on its diagonal and U is an upper
triangular matrix.

The permutations are necessary for both theoretical and computational reasons. The matrix

0 1
1 0

cannot be expressed as the product of triangular matrices without interchanging its two rows.
Although the matrix

ε 1
1 0

can be expressed as the product of triangular matrices, when ε is small, the elements in the factors
are large and magnify errors, so even though the permutations are not strictly necessary, they are
desirable. Partial pivoting ensures that the elements of L are bounded by one in magnitude and that
the elements of U are not much larger than those of A.

For example:
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[L,U] = lu(B)

L =
    1.0000         0         0
    0.3750    0.5441    1.0000
    0.5000    1.0000         0

U =
    8.0000    1.0000    6.0000
         0    8.5000   -1.0000
         0         0    5.2941

The LU factorization of A allows the linear system

A*x = b

to be solved quickly with

x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) = det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)), though the signs of the
determinants might be reversed.

QR Factorization
An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix whose columns all have
unit length and are perpendicular to each other. If Q is orthogonal, then

QTQ = I,

where I is the identity matrix.

The simplest orthogonal matrices are two-dimensional coordinate rotations:

cos(θ) sin(θ)
−sin(θ) cos(θ)

.

For complex matrices, the corresponding term is unitary. Orthogonal and unitary matrices are
desirable for numerical computation because they preserve length, preserve angles, and do not
magnify errors.

The orthogonal, or QR, factorization expresses any rectangular matrix as the product of an
orthogonal or unitary matrix and an upper triangular matrix. A column permutation might also be
involved:

A = QR

or
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AP = QR,

where Q is orthogonal or unitary, R is upper triangular, and P is a permutation.

There are four variants of the QR factorization—full or economy size, and with or without column
permutation.

Overdetermined linear systems involve a rectangular matrix with more rows than columns, that is m-
by-n with m > n. The full-size QR factorization produces a square, m-by-m orthogonal Q and a
rectangular m-by-n upper triangular R:

C=gallery('uniformdata',[5 4], 0);
[Q,R] = qr(C)

Q =

    0.6191    0.1406   -0.1899   -0.5058    0.5522
    0.1506    0.4084    0.5034    0.5974    0.4475
    0.3954   -0.5564    0.6869   -0.1478   -0.2008
    0.3167    0.6676    0.1351   -0.1729   -0.6370
    0.5808   -0.2410   -0.4695    0.5792   -0.2207

R =

    1.5346    1.0663    1.2010    1.4036
         0    0.7245    0.3474   -0.0126
         0         0    0.9320    0.6596
         0         0         0    0.6648
         0         0         0         0

In many cases, the last m – n columns of Q are not needed because they are multiplied by the zeros in
the bottom portion of R. So the economy-size QR factorization produces a rectangular, m-by-n Q with
orthonormal columns and a square n-by-n upper triangular R. For the 5-by-4 example, this is not
much of a saving, but for larger, highly rectangular matrices, the savings in both time and memory
can be quite important:

[Q,R] = qr(C,0)    
Q =

    0.6191    0.1406   -0.1899   -0.5058
    0.1506    0.4084    0.5034    0.5974
    0.3954   -0.5564    0.6869   -0.1478
    0.3167    0.6676    0.1351   -0.1729
    0.5808   -0.2410   -0.4695    0.5792

R =

    1.5346    1.0663    1.2010    1.4036
         0    0.7245    0.3474   -0.0126
         0         0    0.9320    0.6596
         0         0         0    0.6648

In contrast to the LU factorization, the QR factorization does not require any pivoting or
permutations. But an optional column permutation, triggered by the presence of a third output
argument, is useful for detecting singularity or rank deficiency. At each step of the factorization, the
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column of the remaining unfactored matrix with largest norm is used as the basis for that step. This
ensures that the diagonal elements of R occur in decreasing order and that any linear dependence
among the columns is almost certainly be revealed by examining these elements. For the small
example given here, the second column of C has a larger norm than the first, so the two columns are
exchanged:

[Q,R,P] = qr(C)

Q =
   -0.3522    0.8398   -0.4131
   -0.7044   -0.5285   -0.4739
   -0.6163    0.1241    0.7777

R =
  -11.3578   -8.2762
         0    7.2460
         0         0

P =
     0     1
     1     0

When the economy-size and column permutations are combined, the third output argument is a
permutation vector, rather than a permutation matrix:

[Q,R,p] = qr(C,0)

Q =
   -0.3522    0.8398
   -0.7044   -0.5285
   -0.6163    0.1241

R =
  -11.3578   -8.2762
         0    7.2460

p =
     2     1

The QR factorization transforms an overdetermined linear system into an equivalent triangular
system. The expression

norm(A*x - b)

equals

norm(Q*R*x - b)

Multiplication by orthogonal matrices preserves the Euclidean norm, so this expression is also equal
to

norm(R*x - y)

where y = Q'*b. Since the last m-n rows of R are zero, this expression breaks into two pieces:

norm(R(1:n,1:n)*x - y(1:n))

2 Linear Algebra

2-24



and

norm(y(n+1:m))

When A has full rank, it is possible to solve for x so that the first of these expressions is zero. Then
the second expression gives the norm of the residual. When A does not have full rank, the triangular
structure of R makes it possible to find a basic solution to the least-squares problem.

Using Multithreaded Computation for Factorization
MATLAB software supports multithreaded computation for a number of linear algebra and element-
wise numerical functions. These functions automatically execute on multiple threads. For a function
or expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently.
These sections must be able to execute with little communication between processes. They
should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time
required to partition the data and manage separate execution threads. For example, most
functions speed up only when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As
a general rule, complicated functions speed up more than simple functions.

lu and qr show significant increase in speed on large double-precision arrays (on order of 10,000
elements).
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Powers and Exponentials
This topic shows how to compute matrix powers and exponentials using a variety of methods.

Positive Integer Powers

If A is a square matrix and p is a positive integer, then A^p effectively multiplies A by itself p-1 times.
For example:

A = [1 1 1
     1 2 3
     1 3 6];
A^2

ans = 3×3

     3     6    10
     6    14    25
    10    25    46

Inverse and Fractional Powers

If A is square and nonsingular, then A^(-p) effectively multiplies inv(A) by itself p-1 times.

A^(-3)

ans = 3×3

  145.0000 -207.0000   81.0000
 -207.0000  298.0000 -117.0000
   81.0000 -117.0000   46.0000

MATLAB® calculates inv(A) and A^(-1) with the same algorithm, so the results are exactly the
same. Both inv(A) and A^(-1) produce warnings if the matrix is close to being singular.

isequal(inv(A),A^(-1))

ans = logical
   1

Fractional powers, such as A^(2/3), are also permitted. The results using fractional powers depend
on the distribution of the eigenvalues of the matrix.

A^(2/3)

ans = 3×3

    0.8901    0.5882    0.3684
    0.5882    1.2035    1.3799
    0.3684    1.3799    3.1167

Element-by-Element Powers

The .^ operator calculates element-by-element powers. For example, to square each element in a
matrix you can use A.^2.
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A.^2

ans = 3×3

     1     1     1
     1     4     9
     1     9    36

Square Roots

The sqrt function is a convenient way to calculate the square root of each element in a matrix. An
alternate way to do this is A.^(1/2).

sqrt(A)

ans = 3×3

    1.0000    1.0000    1.0000
    1.0000    1.4142    1.7321
    1.0000    1.7321    2.4495

For other roots, you can use nthroot. For example, calculate A.^(1/3).

nthroot(A,3)

ans = 3×3

    1.0000    1.0000    1.0000
    1.0000    1.2599    1.4422
    1.0000    1.4422    1.8171

These element-wise roots differ from the matrix square root, which calculates a second matrix B such
that A = BB. The function sqrtm(A) computes A^(1/2) by a more accurate algorithm. The m in
sqrtm distinguishes this function from sqrt(A), which, like A.^(1/2), does its job element-by-
element.

B = sqrtm(A)

B = 3×3

    0.8775    0.4387    0.1937
    0.4387    1.0099    0.8874
    0.1937    0.8874    2.2749

B^2

ans = 3×3

    1.0000    1.0000    1.0000
    1.0000    2.0000    3.0000
    1.0000    3.0000    6.0000

Scalar Bases

In addition to raising a matrix to a power, you also can raise a scalar to the power of a matrix.
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2^A

ans = 3×3

   10.4630   21.6602   38.5862
   21.6602   53.2807   94.6010
   38.5862   94.6010  173.7734

When you raise a scalar to the power of a matrix, MATLAB uses the eigenvalues and eigenvectors of
the matrix to calculate the matrix power. If [V,D] = eig(A), then 2A = V 2D V−1.

[V,D] = eig(A);
V*2^D*V^(-1)

ans = 3×3

   10.4630   21.6602   38.5862
   21.6602   53.2807   94.6010
   38.5862   94.6010  173.7734

Matrix Exponentials

The matrix exponential is a special case of raising a scalar to a matrix power. The base for a matrix
exponential is Euler's number e = exp(1).

e = exp(1);
e^A

ans = 3×3
103 ×

    0.1008    0.2407    0.4368
    0.2407    0.5867    1.0654
    0.4368    1.0654    1.9418

The expm function is a more convenient way to calculate matrix exponentials.

expm(A)

ans = 3×3
103 ×

    0.1008    0.2407    0.4368
    0.2407    0.5867    1.0654
    0.4368    1.0654    1.9418

The matrix exponential can be calculated in a number of ways. See “Matrix Exponentials” on page 2-
38 for more information.

Dealing with Small Numbers

The MATLAB functions log1p and expm1 calculate log 1 + x  and ex− 1 accurately for very small
values of x. For example, if you try to add a number smaller than machine precision to 1, then the
result gets rounded to 1.
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log(1+eps/2)

ans = 0

However, log1p is able to return a more accurate answer.

log1p(eps/2)

ans = 1.1102e-16

Likewise for ex− 1, if x is very small then it is rounded to zero.

exp(eps/2)-1

ans = 0

Again, expm1 is able to return a more accurate answer.

expm1(eps/2)

ans = 1.1102e-16
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Eigenvalues
In this section...
“Eigenvalue Decomposition” on page 2-30
“Multiple Eigenvalues” on page 2-31
“Schur Decomposition” on page 2-31

Eigenvalue Decomposition
An eigenvalue and eigenvector of a square matrix A are, respectively, a scalar λ and a nonzero vector
υ that satisfy

Aυ = λυ.

With the eigenvalues on the diagonal of a diagonal matrix Λ and the corresponding eigenvectors
forming the columns of a matrix V, you have

AV = VΛ.

If V is nonsingular, this becomes the eigenvalue decomposition

A = VΛV–1.

A good example is the coefficient matrix of the differential equation dx/dt = Ax:

A =
     0    -6    -1
     6     2   -16
    -5    20   -10

The solution to this equation is expressed in terms of the matrix exponential x(t) = etAx(0). The
statement

lambda = eig(A)

produces a column vector containing the eigenvalues of A. For this matrix, the eigenvalues are
complex:

lambda =
     -3.0710         
     -2.4645+17.6008i
     -2.4645-17.6008i

The real part of each of the eigenvalues is negative, so eλt approaches zero as t increases. The
nonzero imaginary part of two of the eigenvalues, ±ω, contributes the oscillatory component, sin(ωt),
to the solution of the differential equation.

With two output arguments, eig computes the eigenvectors and stores the eigenvalues in a diagonal
matrix:

[V,D] = eig(A)

V =
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  -0.8326         0.2003 - 0.1394i   0.2003 + 0.1394i
  -0.3553        -0.2110 - 0.6447i  -0.2110 + 0.6447i
  -0.4248        -0.6930            -0.6930          

D =
  -3.0710                 0                 0         
        0           -2.4645+17.6008i        0         
        0                 0           -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates of each other. All three
vectors are normalized to have Euclidean length, norm(v,2), equal to one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is within round-off error of
A. And, inv(V)*A*V, or V\A*V, is within round-off error of D.

Multiple Eigenvalues
Some matrices do not have an eigenvector decomposition. These matrices are not diagonalizable. For
example:

A = [ 1    -2    1 
      0     1    4 
      0     0    3 ]

For this matrix

[V,D] = eig(A)

produces

V =

    1.0000    1.0000   -0.5571
         0    0.0000    0.7428
         0         0    0.3714

D =

     1     0     0
     0     1     0
     0     0     3

There is a double eigenvalue at λ = 1. The first and second columns of V are the same. For this
matrix, a full set of linearly independent eigenvectors does not exist.

Schur Decomposition
Many advanced matrix computations do not require eigenvalue decompositions. They are based,
instead, on the Schur decomposition

A = USU ′ ,

where U is an orthogonal matrix and S is a block upper-triangular matrix with 1-by-1 and 2-by-2
blocks on the diagonal. The eigenvalues are revealed by the diagonal elements and blocks of S, while
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the columns of U provide an orthogonal basis, which has much better numerical properties than a set
of eigenvectors.

For example, compare the eigenvalue and Schur decompositions of this defective matrix:

A = [ 6    12    19 
     -9   -20   -33 
      4     9    15 ];

[V,D] = eig(A)

V =

  -0.4741 + 0.0000i  -0.4082 - 0.0000i  -0.4082 + 0.0000i
   0.8127 + 0.0000i   0.8165 + 0.0000i   0.8165 + 0.0000i
  -0.3386 + 0.0000i  -0.4082 + 0.0000i  -0.4082 - 0.0000i

D =

  -1.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   1.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   1.0000 - 0.0000i

[U,S] = schur(A)

U =

   -0.4741    0.6648    0.5774
    0.8127    0.0782    0.5774
   -0.3386   -0.7430    0.5774

S =

   -1.0000   20.7846  -44.6948
         0    1.0000   -0.6096
         0    0.0000    1.0000

The matrix A is defective since it does not have a full set of linearly independent eigenvectors (the
second and third columns of V are the same). Since not all columns of V are linearly independent, it
has a large condition number of about ~1e8. However, schur is able to calculate three different
basis vectors in U. Since U is orthogonal, cond(U) = 1.

The matrix S has the real eigenvalue as the first entry on the diagonal and the repeated eigenvalue
represented by the lower right 2-by-2 block. The eigenvalues of the 2-by-2 block are also eigenvalues
of A:

eig(S(2:3,2:3))

ans =

   1.0000 + 0.0000i
   1.0000 - 0.0000i
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Singular Values
A singular value and corresponding singular vectors of a rectangular matrix A are, respectively, a
scalar σ and a pair of vectors u and v that satisfy

Av = σu

AHu = σv,

where AH is the Hermitian transpose of A. The singular vectors u and v are typically scaled to have a
norm of 1. Also, if u and v are singular vectors of A, then -u and -v are singular vectors of A as well.

The singular values σ are always real and nonnegative, even if A is complex. With the singular values
in a diagonal matrix Σ and the corresponding singular vectors forming the columns of two orthogonal
matrices U and V, you obtain the equations

AV = UΣ

AHU = VΣ .

Since U and V are unitary matrices, multiplying the first equation by VH on the right yields the
singular value decomposition equation

A = UΣVH .

The full singular value decomposition of an m-by-n matrix involves:

• m-by-m matrix U
• m-by-n matrix Σ
• n-by-n matrix V

In other words, U and V are both square, and Σ is the same size as A. If A has many more rows than
columns (m > n), then the resulting m-by-m matrix U is large. However, most of the columns in U are
multiplied by zeros in Σ. In this situation, the economy-sized decomposition saves both time and
storage by producing an m-by-n U, an n-by-n Σ and the same V:

The eigenvalue decomposition is the appropriate tool for analyzing a matrix when it represents a
mapping from a vector space into itself, as it does for an ordinary differential equation. However, the
singular value decomposition is the appropriate tool for analyzing a mapping from one vector space
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into another vector space, possibly with a different dimension. Most systems of simultaneous linear
equations fall into this second category.

If A is square, symmetric, and positive definite, then its eigenvalue and singular value decompositions
are the same. But, as A departs from symmetry and positive definiteness, the difference between the
two decompositions increases. In particular, the singular value decomposition of a real matrix is
always real, but the eigenvalue decomposition of a real, nonsymmetric matrix might be complex.

For the example matrix

A =
     9     4
     6     8
     2     7

the full singular value decomposition is

[U,S,V] = svd(A)

U =

    0.6105   -0.7174    0.3355
    0.6646    0.2336   -0.7098
    0.4308    0.6563    0.6194

S =

   14.9359         0
         0    5.1883
         0         0

V =

    0.6925   -0.7214
    0.7214    0.6925

You can verify that U*S*V' is equal to A to within round-off error. For this small problem, the
economy size decomposition is only slightly smaller.

[U,S,V] = svd(A,0)

U =

    0.6105   -0.7174
    0.6646    0.2336
    0.4308    0.6563

S =

   14.9359         0
         0    5.1883

V =
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    0.6925   -0.7214
    0.7214    0.6925

Again, U*S*V' is equal to A to within round-off error.

Low-Rank SVD Approximations
For large sparse matrices, using svd to calculate all of the singular values and singular vectors is not
always practical. For example, if you need to know just a few of the largest singular values, then
calculating all of the singular values of a 5000-by-5000 sparse matrix is extra work.

In cases where only a subset of the singular values and singular vectors are required, the svds and
svdsketch functions are preferred over svd.

Function Usage
svds Use svds to calculate a rank-k approximation of

the SVD. You can specify whether the subset of
singular values should be the largest, the
smallest, or the closest to a specific number.
svds generally calculates the best possible rank-
k approximation.

svdsketch Use svdsketch to calculate a partial SVD of the
input matrix satisfying a specified tolerance.
While svds requires that you specify the rank,
svdsketch adaptively determines the rank of the
matrix sketch based on the specified tolerance.
The rank-k approximation that svdsketch
ultimately uses satisfies the tolerance, but unlike
svds, it is not guaranteed to be the best one
possible.

For example, consider a 1000-by-1000 random sparse matrix with a density of about 30%.

n = 1000;
A = sprand(n,n,0.3);

The six largest singular values are

S = svds(A)

S =

  130.2184
   16.4358
   16.4119
   16.3688
   16.3242
   16.2838

Also, the six smallest singular values are

S = svds(A,6,'smallest')

S =
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    0.0740
    0.0574
    0.0388
    0.0282
    0.0131
    0.0066

For smaller matrices that can fit in memory as a full matrix, full(A), using svd(full(A)) might
still be quicker than svds or svdsketch. However, for truly large and sparse matrices, using svds
or svdsketch becomes necessary.
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LAPACK in MATLAB
LAPACK (Linear Algebra Package) is a library of routines that provides fast, robust algorithms for
numerical linear algebra and matrix computations. Linear algebra functions and matrix operations in
MATLAB are built on LAPACK, and they continue to benefit from the performance and accuracy of its
routines.

A Brief History
MATLAB started its life in the late 1970s as an interactive calculator built on top of LINPACK and
EISPACK, which were the state-of-the-art Fortran subroutine libraries for matrix computation of the
time. For many years MATLAB used translations to C of about a dozen Fortran subroutines from
LINPACK and EISPACK.

In the year 2000, MATLAB migrated to using LAPACK, which is the modern replacement for LINPACK
and EISPACK. It is a large, multi-author, Fortran library for numerical linear algebra. LAPACK was
originally intended for use on supercomputers because of its ability to operate on several columns of
a matrix at a time. The speed of LAPACK routines is closely connected to the speed of the Basic
Linear Algebra Subroutines (BLAS). The BLAS version is typically hardware-specific and highly
optimized.

See Also

More About
• “Call LAPACK and BLAS Functions”

External Websites
• MATLAB Incorporates LAPACK
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Matrix Exponentials
This example shows 3 of the 19 ways to compute the exponential of a matrix.

For background on the computation of matrix exponentials, see:

Moler, C. and C. Van Loan. "Nineteen dubious ways to compute the exponential of a matrix, twenty-
five years later." SIAM Review. Vol. 45, Number 1, 2003, pp. 3-49.

Start by creating a matrix A.

A = [0 1 2; 0.5 0 1; 2 1 0]

A = 3×3

         0    1.0000    2.0000
    0.5000         0    1.0000
    2.0000    1.0000         0

Asave = A;

Method 1: Scaling and Squaring

expmdemo1 is an implementation of algorithm 11.3.1 in the book:

Golub, Gene H. and Charles Van Loan. Matrix Computations, 3rd edition. Baltimore, MD: Johns
Hopkins University Press, 1996.

% Scale A by power of 2 so that its norm is < 1/2 .
[f,e] = log2(norm(A,'inf'));
s = max(0,e+1);
A = A/2^s;

% Pade approximation for exp(A)
X = A;
c = 1/2;
E = eye(size(A)) + c*A;
D = eye(size(A)) - c*A;
q = 6;
p = 1;
for k = 2:q
   c = c * (q-k+1) / (k*(2*q-k+1));
   X = A*X;
   cX = c*X;
   E = E + cX;
   if p
     D = D + cX;
   else
     D = D - cX;
   end
   p = ~p;
end
E = D\E;

% Undo scaling by repeated squaring
for k = 1:s
    E = E*E;
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end

E1 = E

E1 = 3×3

    5.3091    4.0012    5.5778
    2.8088    2.8845    3.1930
    5.1737    4.0012    5.7132

Method 2: Taylor Series

expmdemo2 uses the classic definition for the matrix exponential given by the power series

eA = ∑
k = 0

∞ 1
k! Ak .

A0 is the identity matrix with the same dimensions as A. As a practical numerical method, this
approach is slow and inaccurate if norm(A) is too large.

A = Asave;

% Taylor series for exp(A)
E = zeros(size(A));
F = eye(size(A));
k = 1;

while norm(E+F-E,1) > 0
   E = E + F;
   F = A*F/k;
   k = k+1;
end

E2 = E

E2 = 3×3

    5.3091    4.0012    5.5778
    2.8088    2.8845    3.1930
    5.1737    4.0012    5.7132

Method 3: Eigenvalues and Eigenvectors

expmdemo3 assumes that the matrix has a full set of eigenvectors V such that A = VDV−1. The matrix
exponential can be calculated by exponentiating the diagonal matrix of eigenvalues:

eA = VeDV−1 .

As a practical numerical method, the accuracy is determined by the condition of the eigenvector
matrix.

A = Asave;

[V,D] = eig(A);
E = V * diag(exp(diag(D))) / V;
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E3 = E

E3 = 3×3

    5.3091    4.0012    5.5778
    2.8088    2.8845    3.1930
    5.1737    4.0012    5.7132

Compare Results

For the matrix in this example, all three methods work equally well.

E = expm(Asave);
err1 = E - E1

err1 = 3×3
10-14 ×

    0.3553    0.1776    0.0888
    0.0888    0.1332   -0.0444
         0         0   -0.2665

err2 = E - E2

err2 = 3×3
10-14 ×

         0         0   -0.1776
   -0.0444         0   -0.0888
    0.1776         0    0.0888

err3 = E - E3

err3 = 3×3
10-14 ×

   -0.7105   -0.5329   -0.7105
   -0.6661   -0.5773   -0.8882
   -0.7105   -0.7105   -0.9770

Taylor Series Failure

For some matrices the terms in the Taylor series become very large before they go to zero.
Consequently, expmdemo2 fails.

A = [-147 72; -192 93];
E1 = expmdemo1(A)

E1 = 2×2

   -0.0996    0.0747
   -0.1991    0.1494

E2 = expmdemo2(A)
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E2 = 2×2
106 ×

   -1.1985   -0.5908
   -2.7438   -2.0442

E3 = expmdemo3(A)

E3 = 2×2

   -0.0996    0.0747
   -0.1991    0.1494

Eigenvalues and Eigenvectors Failure

Here is a matrix that does not have a full set of eigenvectors. Consequently, expmdemo3 fails.

A = [-1 1; 0 -1];
E1 = expmdemo1(A)

E1 = 2×2

    0.3679    0.3679
         0    0.3679

E2 = expmdemo2(A)

E2 = 2×2

    0.3679    0.3679
         0    0.3679

E3 = expmdemo3(A)

E3 = 2×2

    0.3679         0
         0    0.3679

See Also
expm
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Graphical Comparison of Exponential Functions
This example shows an interesting graphical approach for discovering whether eπ is greater than πe.

The question is: which is greater, eπ or πe? The easy way to find out is to type it directly at the
MATLAB® command prompt. But another way to analyze the situation is to ask a more general
question: what is the shape of the function z x, y = xy − yx?

Here is a plot of z.

% Define the mesh
x = 0:0.16:5;
y = 0:0.16:5;
[xx,yy] = meshgrid(x,y);

% The plot
zz = xx.^yy-yy.^xx;
h = surf(x,y,zz);
h.EdgeColor = [0.7 0.7 0.7];
view(20,50);
colormap(hsv);
title('$z = x^y-y^x$','Interpreter','latex')
xlabel('x')
ylabel('y')
hold on
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The solution of the equation xy − yx = 0 has a very interesting shape, and our original question is not
easily solved by inspection. Here is a plot of the xy values that yield z = 0.

c = contourc(x,y,zz,[0 0]);
list1Len = c(2,1);
xContour = [c(1,2:1+list1Len) NaN c(1,3+list1Len:size(c,2))];
yContour = [c(2,2:1+list1Len) NaN c(2,3+list1Len:size(c,2))];
% Note that the NAN above prevents the end of the first contour line from being
% connected to the beginning of the second line
line(xContour,yContour,'Color','k');

Some combinations of x and y along the black curve are integers. This next plot is of the integer
solutions to the equation xy − yx = 0. Notice that 24 = 42 is the only integer solution where x ≠ y.

plot([0:5 2 4],[0:5 4 2],'r.','MarkerSize',25);
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Finally, plot the points π, e  and e, π  on the surface. The result shows that eπ is indeed larger than
πe (though not by much).

e = exp(1);
plot([e pi],[pi e],'r.','MarkerSize',25);
plot([e pi],[pi e],'y.','MarkerSize',10);
text(e,3.3,'(e,pi)','Color','k', ...
   'HorizontalAlignment','left','VerticalAlignment','bottom');
text(3.3,e,'(pi,e)','Color','k','HorizontalAlignment','left',...
   'VerticalAlignment','bottom');
hold off;
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Verify the results.

e = exp(1);
e^pi

ans = 23.1407

pi^e

ans = 22.4592

See Also
exp | pi
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Basic Matrix Operations
This example shows basic techniques and functions for working with matrices in the MATLAB®
language.

First, let's create a simple vector with 9 elements called a.

a = [1 2 3 4 6 4 3 4 5]

a = 1×9

     1     2     3     4     6     4     3     4     5

Now let's add 2 to each element of our vector, a, and store the result in a new vector.

Notice how MATLAB requires no special handling of vector or matrix math.

b = a + 2

b = 1×9

     3     4     5     6     8     6     5     6     7

Creating graphs in MATLAB is as easy as one command. Let's plot the result of our vector addition
with grid lines.

plot(b)
grid on
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MATLAB can make other graph types as well, with axis labels.

bar(b)
xlabel('Sample #')
ylabel('Pounds')
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MATLAB can use symbols in plots as well. Here is an example using stars to mark the points.
MATLAB offers a variety of other symbols and line types.

plot(b,'*')
axis([0 10 0 10])
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One area in which MATLAB excels is matrix computation.

Creating a matrix is as easy as making a vector, using semicolons (;) to separate the rows of a matrix.

A = [1 2 0; 2 5 -1; 4 10 -1]

A = 3×3

     1     2     0
     2     5    -1
     4    10    -1

We can easily find the transpose of the matrix A.

B = A'

B = 3×3

     1     2     4
     2     5    10
     0    -1    -1

Now let's multiply these two matrices together.

Note again that MATLAB doesn't require you to deal with matrices as a collection of numbers.
MATLAB knows when you are dealing with matrices and adjusts your calculations accordingly.
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C = A * B

C = 3×3

     5    12    24
    12    30    59
    24    59   117

Instead of doing a matrix multiply, we can multiply the corresponding elements of two matrices or
vectors using the .* operator.

C = A .* B

C = 3×3

     1     4     0
     4    25   -10
     0   -10     1

Let's use the matrix A to solve the equation, A*x = b. We do this by using the \ (backslash) operator.

b = [1;3;5]

b = 3×1

     1
     3
     5

x = A\b

x = 3×1

     1
     0
    -1

Now we can show that A*x is equal to b.

r = A*x - b

r = 3×1

     0
     0
     0

MATLAB has functions for nearly every type of common matrix calculation.

There are functions to obtain eigenvalues ...

eig(A)

ans = 3×1
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    3.7321
    0.2679
    1.0000

... as well as the singular values.

svd(A)

ans = 3×1

   12.3171
    0.5149
    0.1577

The "poly" function generates a vector containing the coefficients of the characteristic polynomial.

The characteristic polynomial of a matrix A is

det(λI − A)

p = round(poly(A))

p = 1×4

     1    -5     5    -1

We can easily find the roots of a polynomial using the roots function.

These are actually the eigenvalues of the original matrix.

roots(p)

ans = 3×1

    3.7321
    1.0000
    0.2679

MATLAB has many applications beyond just matrix computation.

To convolve two vectors ...

q = conv(p,p)

q = 1×7

     1   -10    35   -52    35   -10     1

... or convolve again and plot the result.

r = conv(p,q)

r = 1×10
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     1   -15    90  -278   480  -480   278   -90    15    -1

plot(r);

At any time, we can get a listing of the variables we have stored in memory using the who or whos
command.

whos

  Name      Size            Bytes  Class     Attributes

  A         3x3                72  double              
  B         3x3                72  double              
  C         3x3                72  double              
  a         1x9                72  double              
  ans       3x1                24  double              
  b         3x1                24  double              
  p         1x4                32  double              
  q         1x7                56  double              
  r         1x10               80  double              
  x         3x1                24  double              

You can get the value of a particular variable by typing its name.

A

A = 3×3
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     1     2     0
     2     5    -1
     4    10    -1

You can have more than one statement on a single line by separating each statement with commas or
semicolons.

If you don't assign a variable to store the result of an operation, the result is stored in a temporary
variable called ans.

sqrt(-1)

ans = 0.0000 + 1.0000i

As you can see, MATLAB easily deals with complex numbers in its calculations.

See Also

More About
• “Array vs. Matrix Operations”
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Determine Whether Matrix Is Symmetric Positive Definite
This topic explains how to use the chol and eig functions to determine whether a matrix is
symmetric positive definite (a symmetric matrix with all positive eigenvalues).

Method 1: Attempt Cholesky Factorization

The most efficient method to check whether a matrix is symmetric positive definite is to simply
attempt to use chol on the matrix. If the factorization fails, then the matrix is not symmetric positive
definite. This method does not require the matrix to be symmetric for a successful test (if the matrix
is not symmetric, then the factorization fails).

A = [1 -1 0; -1 5 0; 0 0 7]

A = 3×3

     1    -1     0
    -1     5     0
     0     0     7

try chol(A)
    disp('Matrix is symmetric positive definite.')
catch ME
    disp('Matrix is not symmetric positive definite')
end

ans = 3×3

    1.0000   -1.0000         0
         0    2.0000         0
         0         0    2.6458

Matrix is symmetric positive definite.

The drawback of this method is that it cannot be extended to also check whether the matrix is
symmetric positive semi-definite (where the eigenvalues can be positive or zero).

Method 2: Check Eigenvalues

While it is less efficient to use eig to calculate all of the eigenvalues and check their values, this
method is more flexible since you can also use it to check whether a matrix is symmetric positive
semi-definite. Still, for small matrices the difference in computation time between the methods is
negligible to check whether a matrix is symmetric positive definite.

This method requires that you use issymmetric to check whether the matrix is symmetric before
performing the test (if the matrix is not symmetric, then there is no need to calculate the
eigenvalues).

tf = issymmetric(A)

tf = logical
   1

d = eig(A)
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d = 3×1

    0.7639
    5.2361
    7.0000

isposdef = all(d > 0)

isposdef = logical
   1

You can extend this method to check whether a matrix is symmetric positive semi-definite with the
command all(d >= 0).

Numerical Considerations

The methods outlined here might give different results for the same matrix. Since both calculations
involve round-off errors, each algorithm checks the definiteness of a matrix that is slightly different
from A. In practice, the use of a tolerance is a more robust comparison method, since eigenvalues can
be numerically zero within machine precision and be slightly positive or slightly negative.

For example, if a matrix has an eigenvalue on the order of eps, then using the comparison isposdef
= all(d > 0) returns true, even though the eigenvalue is numerically zero and the matrix is
better classified as symmetric positive semi-definite.

To perform the comparison using a tolerance, you can use the modified commands

tf = issymmetric(A)
d = eig(A)
isposdef = all(d > tol)
issemidef = all(d > -tol)

The tolerance defines a radius around zero, and any eigenvalues within that radius are treated as
zeros. A good choice for the tolerance in most cases is length(d)*eps(max(d)), which takes into
account the magnitude of the largest eigenvalue.

See Also
chol | eig

More About
• “Factorizations” on page 2-20
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Image Compression with Low-Rank SVD
This example shows how to use svdsketch to compress an image. svdsketch uses a low-rank
matrix approximation to preserve important features of the image, while filtering out less important
features. As the tolerance used with svdsketch increases in magnitude, more features are filtered
out, changing the level of detail in the image.

Load Image

Load the image street1.jpg, which is a picture of a city street. The 3-D matrix that forms this
image is uint8, so convert the image to a grayscale matrix. View the image with an annotation of the
original matrix rank.

A = imread('street1.jpg');
A = rgb2gray(A);
imshow(A)
title(['Original (',sprintf('Rank %d)',rank(double(A)))])
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Compress Image

Use svdsketch to calculate a low-rank matrix that approximates A within a tolerance of 1e-2. Form
the low-rank matrix by multiplying the SVD factors returned by svdsketch, convert the result to
uint8, and view the resulting image.

[U1,S1,V1] = svdsketch(double(A),1e-2);
Anew1 = uint8(U1*S1*V1');
imshow(uint8(Anew1))
title(sprintf('Rank %d approximation',size(S1,1)))

svdsketch produces a rank 288 approximation, which results in some minor graininess in some of
the boundary lines of the image.

Now, compress the image a second time using a tolerance of 1e-1. As the magnitude of the tolerance
increases, the rank of the approximation produced by svdsketch generally decreases.

[U2,S2,V2] = svdsketch(double(A),1e-1);
Anew2 = uint8(U2*S2*V2');
imshow(Anew2)
title(sprintf('Rank %d approximation',size(S2,1)))
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This time, svdsketch produces a rank 48 approximation. Most of the major aspects of the image are
still visible, but the additional compression increases the blurriness.

Limit Subspace Size

svdsketch adaptively determines what rank to use for the matrix sketch based on the specified
tolerance. However, you can use the MaxSubspaceDimension name-value pair to specify the
maximum subspace size that should be used to form the matrix sketch. This option can produce
matrices that do not satisfy the tolerance, since the subspace you specify might be too small. In these
cases, svdsketch returns a matrix sketch with the maximum allowed subspace size.

Use svdsketch with a tolerance of 1e-1 and a maximum subspace size of 15. Specify a fourth
output to return the relative approximation error.

[U3,S3,V3,apxErr] = svdsketch(double(A),1e-1,'MaxSubspaceDimension',15);

Compare the relative approximation error of the result with the specified tolerance. apxErr contains
one element since svdsketch only needs one iteration to compute the answer.

apxErr <= 1e-1
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ans = logical
   0

The result indicates that the matrix sketch does not satisfy the specified tolerance.

View the heavily compressed rank 15 image.

Anew3 = uint8(U3*S3*V3');
imshow(Anew3)
title(sprintf('Rank %d approximation',size(S3,1)))

Compare Results

Finally, view all of the images side-by-side for comparison.

tiledlayout(2,2,'TileSpacing','Compact')
nexttile
imshow(A)
title('Original')
nexttile
imshow(Anew1)
title(sprintf('Rank %d approximation',size(S1,1)))
nexttile
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imshow(Anew2)
title(sprintf('Rank %d approximation',size(S2,1)))
nexttile
imshow(Anew3)
title(sprintf('Rank %d approximation',size(S3,1)))

See Also
svd | svds | svdsketch

More About
• “Singular Values” on page 2-33
• “Resample Image with Gridded Interpolation” on page 8-74
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Random Numbers

• “Why Do Random Numbers Repeat After Startup?” on page 3-2
• “Create Arrays of Random Numbers” on page 3-3
• “Random Numbers Within a Specific Range” on page 3-6
• “Random Integers” on page 3-7
• “Random Numbers from Normal Distribution with Specific Mean and Variance” on page 3-8
• “Random Numbers Within a Sphere” on page 3-9
• “Generate Random Numbers That Are Repeatable” on page 3-11
• “Generate Random Numbers That Are Different” on page 3-14
• “Managing the Global Stream Using RandStream” on page 3-16
• “Creating and Controlling a Random Number Stream” on page 3-19
• “Multiple Streams” on page 3-28
• “Replace Discouraged Syntaxes of rand and randn” on page 3-32
• “Controlling Random Number Generation” on page 3-36

3



Why Do Random Numbers Repeat After Startup?
All the random number functions, rand, randn, randi, and randperm, draw values from a shared
random number generator. Every time you start MATLAB, the generator resets itself to the same
state. Therefore, a command such as rand(2,2) returns the same result any time you execute it
immediately following startup. Also, any script or function that calls the random number functions
returns the same result whenever you restart.

If you want to avoid repeating the same random number arrays when MATLAB restarts, then execute
the command,

rng('shuffle');

before calling rand, randn, randi, or randperm. This command ensures that you do not repeat a
result from a previous MATLAB session.

If you want to repeat a result that you got at the start of a MATLAB session without restarting, you
can reset the generator to the startup state at any time using

rng('default');

When you execute rng('default'), the ensuing random number commands return results that
match the output of a new MATLAB session. For example,

rng('default');
A = rand(2,2)

A =

    0.8147    0.1270
    0.9058    0.9134

The values in A match the output of rand(2,2) whenever you restart MATLAB.

See Also
rng

3 Random Numbers

3-2



Create Arrays of Random Numbers
In this section...
“Random Number Functions” on page 3-3
“Random Number Generators” on page 3-4
“Random Number Data Types” on page 3-4

MATLAB uses algorithms to generate pseudorandom and pseudoindependent numbers. These
numbers are not strictly random and independent in the mathematical sense, but they pass various
statistical tests of randomness and independence, and their calculation can be repeated for testing or
diagnostic purposes.

The rand, randi, randn, and randperm functions are the primary functions for creating arrays of
random numbers. The rng function allows you to control the seed and algorithm that generates
random numbers.

Random Number Functions
There are four fundamental random number functions: rand, randi, randn, and randperm. The
rand function returns real numbers between 0 and 1 that are drawn from a uniform distribution. For
example:

rng('default')
r1 = rand(1000,1);

r1 is a 1000-by-1 column vector containing real floating-point numbers drawn from a uniform
distribution. All the values in r1 are in the open interval (0, 1). A histogram of these values is roughly
flat, which indicates a fairly uniform sampling of numbers.

The randi function returns double integer values drawn from a discrete uniform distribution. For
example,

r2 = randi(10,1000,1);

r2 is a 1000-by-1 column vector containing integer values drawn from a discrete uniform distribution
whose range is in the close interval [1, 10]. A histogram of these values is roughly flat, which
indicates a fairly uniform sampling of integers between 1 and 10.

The randn function returns arrays of real floating-point numbers that are drawn from a standard
normal distribution. For example:

r3 = randn(1000,1);

r3 is a 1000-by-1 column vector containing numbers drawn from a standard normal distribution. A
histogram of r3 looks like a roughly normal distribution whose mean is 0 and standard deviation is 1.

You can use the randperm function to create a double array of random integer values that have no
repeated values. For example,

r4 = randperm(15,5);

r4 is a 1-by-5 array containing integers randomly selected from the range [1, 15]. Unlike randi,
which can return an array containing repeated values, the array returned by randperm has no
repeated values.
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Successive calls to any of these functions return different results. This behavior is useful for creating
several different arrays of random values.

Random Number Generators
MATLAB offers several generator algorithm options, which are summarized in the table.

Value Generator Name Generator Keyword
'twister' Mersenne Twister (used by

default stream at MATLAB
startup)

mt19937ar

'simdTwister' SIMD-oriented Fast Mersenne
Twister

dsfmt19937

'combRecursive' Combined multiple recursive mrg32k3a
'multFibonacci' Multiplicative Lagged Fibonacci mlfg6331_64
'philox' Philox 4x32 generator with 10

rounds
philox4x32_10

'threefry' Threefry 4x64 generator with 20
rounds

threefry4x64_20

'v4' Legacy MATLAB version 4.0
generator

mcg16807

'v5uniform' Legacy MATLAB version 5.0
uniform generator

swb2712

'v5normal' Legacy MATLAB version 5.0
normal generator

shr3cong

Use the rng function to set the seed and generator used by the rand, randi, randn, and randperm
functions. For example, rng(0,'twister') reset the generator to its default state. To avoid
repetition of random number arrays when MATLAB restarts, see “Why Do Random Numbers Repeat
After Startup?” on page 3-2

For more information about controlling the random number generator's state to repeat calculations
using the same random numbers, or to guarantee that different random numbers are used in
repeated calculations, see “Controlling Random Number Generation” on page 3-36.

Random Number Data Types
rand and randn functions generate values in double precision by default.

rng('default')
A = rand(1,5);
class(A)

ans = 'double'

To specify the class as double explicitly:

rng('default')
B = rand(1,5,'double');
class(B)
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ans = 'double'

isequal(A,B)

ans = 
1

rand and randn can also generate values in single precision.

rng('default')
A = rand(1,5,'single');
class(A)

ans = 'single'

The values are the same as if you had cast the double precision values from the previous example.
The random stream that the functions draw from advances the same way regardless of what class of
values is returned.

A,B

A =
    0.8147    0.9058    0.1270    0.9134    0.6324

B =
    0.8147    0.9058    0.1270    0.9134    0.6324

randi supports both integer types and single or double precision.

A = randi([1 10],1,5,'double');
class(A)

ans = 'double'

B = randi([1 10],1,5,'uint8');
class(B)

ans = 'uint8'

See Also
rand | randi | randn | randperm | rng

Related Examples
• “Controlling Random Number Generation” on page 3-36
• “Generate Random Numbers That Are Repeatable” on page 3-11
• “Generate Random Numbers That Are Different” on page 3-14
• “Random Numbers Within a Specific Range” on page 3-6
• “Random Integers” on page 3-7
• “Random Numbers from Normal Distribution with Specific Mean and Variance” on page 3-8
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Random Numbers Within a Specific Range
This example shows how to create an array of random floating-point numbers that are drawn from a
uniform distribution in the open interval (50, 100).

By default, rand returns normalized values (between 0 and 1) that are drawn from a uniform
distribution. To change the range of the distribution to a new range, (a, b), multiply each value by the
width of the new range, (b – a) and then shift every value by a.

First, initialize the random number generator to make the results in this example repeatable.

rng(0,'twister');

Create a vector of 1000 random values. Use the rand function to draw the values from a uniform
distribution in the open interval, (50,100).

a = 50;
b = 100;
r = (b-a).*rand(1000,1) + a;

Verify the values in r are within the specified range.

r_range = [min(r) max(r)]

r_range =

   50.0261   99.9746

The result is in the open interval, (50,100).

Note Some combinations of a and b make it theoretically possible for your results to include a or b.
In practice, this is extremely unlikely to happen.

See Also
rng

Related Examples
• “Random Numbers from Normal Distribution with Specific Mean and Variance” on page 3-8
• “Random Numbers Within a Sphere” on page 3-9
• “Create Arrays of Random Numbers” on page 3-3
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Random Integers
This example shows how to create an array of random integer values that are drawn from a discrete
uniform distribution on the set of numbers –10, –9,...,9, 10.

The simplest randi syntax returns double-precision integer values between 1 and a specified value,
imax. To specify a different range, use the imin and imax arguments together.

First, initialize the random number generator to make the results in this example repeatable.

rng(0,'twister');

Create a 1-by-1000 array of random integer values drawn from a discrete uniform distribution on the
set of numbers -10, -9,...,9, 10. Use the syntax, randi([imin imax],m,n).

r = randi([-10 10],1,1000);

Verify that the values in r are within the specified range.

[rmin,rmax] = bounds(r)

rmin = -10

rmax = 10

See Also
randi | rng

Related Examples
• “Create Arrays of Random Numbers” on page 3-3
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Random Numbers from Normal Distribution with Specific Mean
and Variance

This example shows how to create an array of random floating-point numbers that are drawn from a
normal distribution having a mean of 500 and variance of 25.

The randn function returns a sample of random numbers from a normal distribution with mean 0 and
variance 1. The general theory of random variables states that if x is a random variable whose mean
is μx and variance is σx

2, then the random variable, y, defined by y = ax + b,where a and b are
constants, has mean μy = aμx + b and variance σy

2 = a2σx
2 . You can apply this concept to get a sample

of normally distributed random numbers with mean 500 and variance 25.

First, initialize the random number generator to make the results in this example repeatable.

rng(0,'twister');

Create a vector of 1000 random values drawn from a normal distribution with a mean of 500 and a
standard deviation of 5.

a = 5;
b = 500;
y = a.*randn(1000,1) + b;

Calculate the sample mean, standard deviation, and variance.

stats = [mean(y) std(y) var(y)]

stats = 1×3

  499.8368    4.9948   24.9483

The mean and variance are not 500 and 25 exactly because they are calculated from a sampling of
the distribution.

See Also
randn | rng

Related Examples
• “Random Numbers Within a Specific Range” on page 3-6
• “Random Numbers Within a Sphere” on page 3-9
• “Create Arrays of Random Numbers” on page 3-3
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Random Numbers Within a Sphere
This example shows how to create random points within the volume of a sphere, as described by
Knuth [1]. The sphere in this example is centered at the origin and has a radius of 3.

One way to create points inside a sphere is to specify them in spherical coordinates. Then you can
convert them to Cartesian coordinates to plot them.

First, initialize the random number generator to make the results in this example repeatable.

rng(0,'twister')

Calculate an elevation angle for each point in the sphere. These values are in the open interval,
(− π/2, π/2), but are not uniformly distributed.

rvals = 2*rand(1000,1)-1;
elevation = asin(rvals);

Create an azimuth angle for each point in the sphere. These values are uniformly distributed in the
open interval, (0, 2π).

azimuth = 2*pi*rand(1000,1);

Create a radius value for each point in the sphere. These values are in the open interval, (0, 3), but
are not uniformly distributed.

radii = 3*(rand(1000,1).^(1/3));

Convert to Cartesian coordinates and plot the result.

[x,y,z] = sph2cart(azimuth,elevation,radii);
figure
plot3(x,y,z,'.')
axis equal
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If you want to place random numbers on the surface of the sphere, then specify a constant radius
value to be the last input argument to sph2cart. In this case, the value is 3.

[x,y,z] = sph2cart(azimuth,elevation,3);

References
[1] Knuth, D. The Art of Computer Programming. Vol. 2, 3rd ed. Reading, MA: Addison-Wesley

Longman, 1998, pp. 134–136.

See Also
rand | rng | sph2cart

Related Examples
• “Random Numbers Within a Specific Range” on page 3-6
• “Random Numbers from Normal Distribution with Specific Mean and Variance” on page 3-8
• “Create Arrays of Random Numbers” on page 3-3
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Generate Random Numbers That Are Repeatable

Specify the Seed
This example shows how to repeat arrays of random numbers by specifying the seed first. Every time
you initialize the generator using the same seed, you always get the same result.

First, initialize the random number generator to make the results in this example repeatable.

rng('default');

Now, initialize the generator using a seed of 1.

rng(1);

Then, create an array of random numbers.

A = rand(3,3)

A =

    0.4170    0.3023    0.1863
    0.7203    0.1468    0.3456
    0.0001    0.0923    0.3968

Repeat the same command.

A = rand(3,3)

A =

    0.5388    0.2045    0.6705
    0.4192    0.8781    0.4173
    0.6852    0.0274    0.5587

The first call to rand changed the state of the generator, so the second result is different.

Now, reinitialize the generator using the same seed as before. Then reproduce the first matrix, A.

rng(1);
A = rand(3,3)

A =

    0.4170    0.3023    0.1863
    0.7203    0.1468    0.3456
    0.0001    0.0923    0.3968

In some situations, setting the seed alone will not guarantee the same results. This is because the
generator that the random number functions draw from might be different than you expect when
your code executes. For long-term repeatability, specify the seed and the generator type together.

For example, the following code sets the seed to 1 and the generator to Mersenne Twister.

rng(1,'twister');

Set the seed and generator type together when you want to:
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• Ensure that the behavior of code you write today returns the same results when you run that code
in a future MATLAB release.

• Ensure that the behavior of code you wrote in a previous MATLAB release returns the same
results using the current release.

• Repeat random numbers in your code after running someone else’s random number code.

See the rng reference page for a list of available generators.

Save and Restore the Generator Settings
This example shows how to create repeatable arrays of random numbers by saving and restoring the
generator settings. The most common reason to save and restore generator settings is to reproduce
the random numbers generated at a specific point in an algorithm or iteration. For example, you can
use the generator settings as an aid in debugging. Unlike reseeding, which reinitializes the generator,
this approach allows you to save and restore the generator settings at any point.

First, initialize the random number generator to make the results in this example repeatable.

rng(1,'twister');

Create an array of random integer values between 1 and 10.

A = randi(10,3,3)

A = 3×3

     5     4     2
     8     2     4
     1     1     4

The first call to randi changed the state of the generator. Save the generator settings after the first
call to randi in a structure s.

s = rng;

Create another array of random integer values between 1 and 10.

A = randi(10,3,3)

A = 3×3

     6     3     7
     5     9     5
     7     1     6

Now, return the generator to the previous state stored in s and reproduce the second array A.

rng(s);
A = randi(10,3,3)

A = 3×3

     6     3     7
     5     9     5
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     7     1     6

See Also
rng

Related Examples
• “Generate Random Numbers That Are Different” on page 3-14
• “Controlling Random Number Generation” on page 3-36
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Generate Random Numbers That Are Different
This example shows how to avoid repeating the same random number arrays when MATLAB restarts.
This technique is useful when you want to combine results from the same random number commands
executed at different MATLAB sessions.

All the random number functions, rand, randn, randi, and randperm, draw values from a shared
random number generator. Every time you start MATLAB, the generator resets itself to the same
state. Therefore, a command such as rand(2,2) returns the same result any time you execute it
immediately following startup. Also, any script or function that calls the random number functions
returns the same result whenever you restart.

One way to get different random numbers is to initialize the generator using a different seed every
time. Doing so ensures that you don’t repeat results from a previous session.

Execute the rng('shuffle') command once in your MATLAB session before calling any of the
random number functions.

rng('shuffle')

You can execute this command in a MATLAB Command Window, or you can add it to your startup file,
which is a special script that MATLAB executes every time you restart.

Now, execute a random number command.

A = rand(2,2);

Each time you call rng('shuffle'), it reseeds the generator using a different seed based on the
current time.

Note Frequent reseeding of the generator does not improve the statistical properties of the output
and does not make the output more random in any real sense. Reseeding can be useful when you
restart MATLAB or before you run a large calculation involving random numbers. However, reseeding
the generator too frequently within a session is not a good idea because the statistical properties of
your random numbers can be adversely affected.

Alternatively, specify different seeds explicitly in different MATLAB sessions. For example, generate
random numbers in one MATLAB session.

rng(1);
A = rand(2,2);

Use different seeds to generate random numbers in another MATLAB session.

rng(2);
B = rand(2,2);

Arrays A and B are different because the generator is initialized with a different seed before each call
to the rand function.

To generate multiple independent streams that are guaranteed to not overlap, and for which tests
that demonstrate independence of the values between streams have been carried out, you can use
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RandStream.create. For more information about generating multiple streams, see “Multiple
Streams” on page 3-28.

See Also
rng

Related Examples
• “Generate Random Numbers That Are Repeatable” on page 3-11
• “Controlling Random Number Generation” on page 3-36
• “Startup Options in MATLAB Startup File”
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Managing the Global Stream Using RandStream
The rand, randn, randi, and randperm functions draw random numbers from an underlying
random number stream, called the global stream. The global stream is a RandStream object. A
simple way to control the global stream is to use the rng function. For more comprehensive control,
the RandStream class enables you to create a separate stream from the global stream, get a handle
to the global stream, and control random number generation.

Use rng to set the random number generator to the default seed (0) and algorithm (Mersenne
Twister). Save the generator settings.

rng('default')
s = rng

s = struct with fields:
     Type: 'twister'
     Seed: 0
    State: [625x1 uint32]

Create a 1-by-6 row vector of random values between 0 and 1.

x = rand(1,6)

x = 1×6

    0.8147    0.9058    0.1270    0.9134    0.6324    0.0975

Use RandStream.getGlobalStream to return a handle to the global stream, that is, the current
global stream that rand generates random numbers from. If you use
RandStream.getGlobalStream to get a handle to the global stream, you can see the changes you
made to the global stream using rng.

globalStream = RandStream.getGlobalStream

globalStream = 
mt19937ar random stream (current global stream)
             Seed: 0
  NormalTransform: Ziggurat

Change the generator seed and algorithm, and create a new random row vector. Show the current
global stream that rand generates random numbers from.

rng(1,'philox')
xnew = rand(1,6)

xnew = 1×6

    0.5361    0.2319    0.7753    0.2390    0.0036    0.5262

globalStream = RandStream.getGlobalStream

globalStream = 
philox4x32_10 random stream (current global stream)
             Seed: 1
  NormalTransform: Inversion
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Next, restore the original generator settings and create a random vector. The result matches the
original row vector x created with the default generator.

rng(s)
xold = rand(1,6)

xold = 1×6

    0.8147    0.9058    0.1270    0.9134    0.6324    0.0975

By default, random number generation functions, such as rand, use the global random number
stream. To specify a different stream, create another RandStream object. Pass it as the first input
argument to rand. For example, create a 1-by-6 vector of random numbers using the SIMD-oriented
Fast Mersenne Twister.

myStream = RandStream('dsfmt19937')

myStream = 
dsfmt19937 random stream
             Seed: 0
  NormalTransform: Ziggurat

r = rand(myStream,1,6)

r = 1×6

    0.0306    0.2131    0.2990    0.3811    0.8635    0.1334

When you call the rand function with myStream as the first input argument, it draws numbers from
myStream and does not affect the results of the global stream.

If you want to set myStream as a global stream, you can use the RandStream.setGlobalStream
object function.

RandStream.setGlobalStream(myStream)
globalStream = RandStream.getGlobalStream

globalStream = 
dsfmt19937 random stream (current global stream)
             Seed: 0
  NormalTransform: Ziggurat

In many cases, the rng function is all you need to control the global stream, but the RandStream
class allows control over some advanced features, such as the choice of algorithm used for normal
random values.

For example, create a RandStream object and specify the transformation algorithm to generate
normally distributed pseudorandom values when using randn. Generate normally distributed
pseudorandom values using the Polar transformation algorithm, instead of the default Ziggurat
transformation algorithm.

myStream = RandStream('mt19937ar','NormalTransform','Polar')

myStream = 
mt19937ar random stream
             Seed: 0
  NormalTransform: Polar
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Set myStream as the global stream. Create 6 random numbers with uniform distribution from the
global stream.

RandStream.setGlobalStream(myStream)
randn(1,6)

ans = 1×6

    0.2543   -0.7733   -1.7416    0.3686    0.5965   -0.0191

See Also
RandStream | rng

Related Examples
• “Multiple Streams” on page 3-28
• “Creating and Controlling a Random Number Stream” on page 3-19
• “Controlling Random Number Generation” on page 3-36
• “Create Arrays of Random Numbers” on page 3-3
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Creating and Controlling a Random Number Stream
In this section...
“Substreams” on page 3-19
“Choosing a Random Number Generator” on page 3-21
“Configuring a Stream” on page 3-24
“Restore State of Random Number Generator to Reproduce Output” on page 3-25

The RandStream class allows you to create a random number stream. This is useful for several
reasons:

• You can generate random values without affecting the state of the global stream.
• You can separate sources of randomness in a simulation.
• You can use a generator that is configured differently than the one MATLAB software uses at

startup.

With a RandStream object, you can create your own stream, set the writable properties, and use the
stream to generate random numbers. You can control the stream you create the same way you control
the global stream. You can even replace the global stream with the stream you create.

To create a stream, use the RandStream function.

myStream = RandStream('mlfg6331_64');
rand(myStream,1,5)

ans =
    0.6986    0.7413    0.4239    0.6914    0.7255

The random stream myStream acts separately from the global stream. If you call the rand, randn,
randi, and randperm functions with myStream as the first argument, they draw from the stream
you created. If you call rand, randn, randi, and randperm without myStream, they draw from the
global stream.

You can make myStream the global stream using the RandStream.setGlobalStream method.

RandStream.setGlobalStream(myStream)
RandStream.getGlobalStream

ans = 

mlfg6331_64 random stream (current global stream)
             Seed: 0
  NormalTransform: Ziggurat

RandStream.getGlobalStream == myStream

ans =
     1

Substreams
You can use substreams to get different results that are statistically independent from a stream.
Unlike seeds, where the locations along the sequence of random numbers are not exactly known, the
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spacing between substreams is known, so any chance of overlap can be eliminated. In short,
substreams are a more-controlled way to do many of the same things that seeds have traditionally
been used for. Substreams are also a more lightweight solution than parallel streams.

Substreams provide a quick and easy way to ensure that you get different results from the same code
at different times. To use the Substream property of a RandStream object, create a stream using a
generator that supports substreams. See “Choosing a Random Number Generator” on page 3-21 for
a list of generator algorithms that support substreams and their properties. For example, generate
several random numbers in a loop.

myStream = RandStream('mlfg6331_64');
RandStream.setGlobalStream(myStream)
for i = 1:5
    myStream.Substream = i;
    z = rand(1,i)
end

z =
    0.6986

z =
    0.9230    0.2489

z =
    0.0261    0.2530    0.0737

z =
    0.3220    0.7405    0.1983    0.1052

z =
    0.2067    0.2417    0.9777    0.5970    0.4187

In another loop, you can generate random values that are independent from the first set of 5
iterations.

for i = 6:10
    myStream.Substream = i;
    z = rand(1,11-i)
end

z =
    0.2650    0.8229    0.2479    0.0247    0.4581

z =
    0.3963    0.7445    0.7734    0.9113

z =
    0.2758    0.3662    0.7979

z =
    0.6814    0.5150

z =
    0.5247

Substreams are useful in serial computation. Substreams can recreate all or part of a simulation by
returning to a particular checkpoint in stream. For example, you can return to the 6th substream in
the loop. The result contains the same values as the 6th output above.
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myStream.Substream = 6;
z = rand(1,5)

z =
    0.2650    0.8229    0.2479    0.0247    0.4581

Choosing a Random Number Generator
MATLAB offers several generator algorithm options. The table summarizes the key properties of the
available generator algorithms and the keywords used to create them. To return a list of all the
available generator algorithms, use the RandStream.list method.

Keyword Generator Multiple Stream and
Substream Support

Approximate Period
In Full Precision

mt19937ar Mersenne twister (used
by default stream at
MATLAB startup)

No 219937-1

dsfmt19937 SIMD-oriented fast
Mersenne twister

No 219937-1

mcg16807 Multiplicative
congruential generator

No 231-2

mlfg6331_64 Multiplicative lagged
Fibonacci generator

Yes 2124 (251 streams of
length 272)

mrg32k3a Combined multiple
recursive generator

Yes 2191 (263 streams of
length 2127)

philox4x32_10 Philox 4x32 generator
with 10 rounds

Yes 2193 (264 streams of
length 2129)

threefry4x64_20 Threefry 4x64
generator with 20
rounds

Yes 2514 (2256 streams of
length 2258)

shr3cong Shift-register generator
summed with linear
congruential generator

No 264

swb2712 Modified subtract with
borrow generator

No 21492

The generators mcg16807, shr3cong, and swb2712 provide for backwards compatibility with earlier
versions of MATLAB. mt19937ar and dsfmt19937 are designed primarily for sequential
applications. The remaining generators provide explicit support for parallel random number
generation.

Depending on the application, some generators might be faster or return values with more precision.
All pseudorandom number generators are based on deterministic algorithms, and all generators pass
a sufficiently specific statistical test for randomness. One way to check the results of a Monte Carlo
simulation is to rerun the simulation with two or more different generator algorithms, and MATLAB's
choice of generators provide you with the means to do that. Although it is unlikely that your results
will differ by more than the Monte Carlo sampling error when using different generators, there are
examples in the literature where this kind of validation has turned up flaws in a particular generator
algorithm. (See [13] for an example.)
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Generator Algorithms

mt19937ar

The Mersenne Twister, as described in [11], has period 219937− 1 and each U(0,1) value is
created using two 32-bit integers. The possible values are multiples of 2−53 in the interval (0, 1).
This generator does not support multiple streams or substreams. The randn algorithm used by
default for mt19937ar streams is the ziggurat algorithm [7], but with the mt19937ar generator
underneath.

Note This generator is identical to the one used by the rand function beginning in MATLAB
Version 7, activated by rand('twister',s).

dsfmt19937
The double precision SIMD-oriented Fast Mersenne Twister, as described in [12], is a faster
implementation of the Mersenne Twister algorithm. The period is 219937− 1 and the possible
values are multiples of 2−52 in the interval (0, 1). The generator produces double precision values
in [1, 2) natively, which are transformed to create U(0,1) values. This generator does not support
multiple streams or substreams.

mcg16807

A 32-bit multiplicative congruential generator, as described in [14], with multiplier a = 75, modulo
m = 231− 1. This generator has a period of 231− 2 and does not support multiple streams or
substreams. Each U(0,1) value is created using a single 32-bit integer from the generator; the
possible values are all multiples of (231− 1)−1 strictly within the interval (0, 1). For mcg16807
streams, the default algorithm used by randn is the polar algorithm (described in [1]).

Note This generator is identical to the one used beginning in MATLAB Version 4 by both the
rand and randn functions, activated using rand('seed',s) or randn('seed',s).

mlfg6331_64
A 64-bit multiplicative lagged Fibonacci generator, as described in [10], with lags l = 63, k = 31.
This generator is similar to the MLFG implemented in the SPRNG package. It has a period of
approximately 2124. It supports up to 261 parallel streams, via parameterization, and 251

substreams each of length 272. Each U(0,1) value is created using one 64-bit integer from the
generator; the possible values are all multiples of 2−64 strictly within the interval (0, 1). The
randn algorithm used by default for mlfg6331_64 streams is the ziggurat algorithm [7], but
with the mlfg6331_64 generator underneath.

mrg32k3a
A 32-bit combined multiple recursive generator, as described in [2]. This generator is similar to
the CMRG implemented in the RngStreams package in C. It has a period of 2191 and supports up
to 263 parallel streams through sequence splitting, each of length 2127. It also supports 251

substreams, each of length 276. Each U(0,1) value is created using two 32-bit integers from the
generator; the possible values are multiples of 2−53 strictly within the interval (0, 1). The randn
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algorithm used by default for mrg32k3a streams is the ziggurat algorithm [7], but with the
mrg32k3a generator underneath.

philox4x32_10
A 4x32 generator with 10 rounds as described in [15]. This generator uses a Feistel network and
integer multiplication. The generator is specifically designed for high performance in highly
parallel systems such as GPUs. It has a period of 2193 (264 streams of length 2129).

threefry4x64_20
A 4x64 generator with 20 rounds as described in [15]. This generator is a non-cryptographic
adaptation of the Threefish block cipher from the Skein Hash Function. It has a period of 2514

(2256 streams of length 2258).
shr3cong

Marsaglia's SHR3 shift-register generator summed with a linear congruential generator with
multiplier a = 69069, addend b = 1234567, and modulus 2−32. SHR3 is a 3-shift-register
generator defined as u = u(I + L13)(I + R17)(I + L5), where I is the identity operator, L is the left
shift operator, and R is the right shift operator. The combined generator (the SHR3 part is
described in [7]) has a period of approximately 264. This generator does not support multiple
streams or substreams. Each U(0,1) value is created using one 32-bit integer from the generator;
the possible values are all multiples of 2−32 strictly within the interval (0, 1). The randn
algorithm used by default for shr3cong streams is the earlier form of the ziggurat algorithm [9],
but with the shr3cong generator underneath. This generator is identical to the one used by the
randn function beginning in MATLAB Version 5, activated using randn('state',s).

Note The SHR3 generator used in [6] (1999) differs from the one used in [7] (2000). MATLAB
uses the most recent version of the generator, presented in [7].

swb2712
A modified Subtract-with-Borrow generator, as described in [8]. This generator is similar to an
additive lagged Fibonacci generator with lags 27 and 12, but it is modified to have a much longer
period of approximately 21492. The generator works natively in double precision to create U(0,1)
values, and all values in the open interval (0, 1) are possible. The randn algorithm used by
default for swb2712 streams is the ziggurat algorithm [7], but with the swb2712 generator
underneath.

Note This generator is identical to the one used by the rand function beginning in MATLAB
Version 5, activated using rand('state',s).

Transformation Algorithms

Inversion
Computes a normal random variate by applying the standard normal inverse cumulative
distribution function to a uniform random variate. Exactly one uniform value is consumed per
normal value.

Polar
The polar rejection algorithm, as described in [1]. Approximately 1.27 uniform values are
consumed per normal value, on average.
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Ziggurat
The ziggurat algorithm, as described in [7]. Approximately 2.02 uniform values are consumed per
normal value, on average.

Configuring a Stream
A random number stream s has properties that control its behavior. To access or change a property,
use the syntax p = s.Property and s.Property = p.

For example, you can configure the transformation algorithm to generate normally distributed
pseudorandom values when using randn. Generate normally distributed pseudorandom values using
the default Ziggurat transformation algorithm.

s1 = RandStream('mt19937ar');
s1.NormalTransform

ans = 'Ziggurat'

r1 = randn(s1,1,10);

Configure the stream to use the Polar transformation algorithm to generate normally distributed
pseudorandom values.

s1.NormalTransform = 'Polar'

s1 =
mt19937ar random stream
             Seed: 0
  NormalTransform: Polar

r2 = randn(s1,1,10);

When generating random numbers with uniform distribution using rand, you can also configure the
stream to generate antithetic pseudorandom values, that is, the usual values subtracted from 1 for
uniform values.

Create 6 random numbers with uniform distribution from the stream s.

s2 = RandStream('mt19937ar');
r1 = rand(s2,1,6)

r1 =
    0.8147    0.9058    0.1270    0.9134    0.6324    0.0975

Restore the initial state of the stream. Create another 6 random numbers with the Antithetic
property set to true. Check that these 6 random numbers are equal to the previously generated
random numbers subtracted from 1.

reset(s2)
s2.Antithetic = true;
r2 = rand(s2,1,6)

r2 =
    0.1853    0.0942    0.8730    0.0866    0.3676    0.9025

isequal(r1,1 - r2)
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ans =
   1

Instead of setting the properties of a stream one-by-one, you can save and restore all properties of a
stream s by using A = get(s) and set(s,A), respectively. For example, configure all properties of
the stream s2 to be the same as the stream s1.

A = get(s1)

A =
               Type: 'mt19937ar'
         NumStreams: 1
        StreamIndex: 1
          Substream: 1
               Seed: 0
              State: [625x1 uint32]
    NormalTransform: 'Polar'
         Antithetic: 0
      FullPrecision: 1

set(s2,A)

               Type: 'mt19937ar'
         NumStreams: 1
        StreamIndex: 1
          Substream: 1
               Seed: 0
              State: [625x1 uint32]
    NormalTransform: 'Polar'
         Antithetic: 0
      FullPrecision: 1

The get and set functions enable you to save and restore a stream's entire configuration so that
results are exactly reproducible later on.

Restore State of Random Number Generator to Reproduce Output
The State property is the internal state of the random number generator. You can save the state of
the global stream at a certain point in your simulation when generating random numbers to
reproduce the results later on.

Use RandStream.getGlobalStream to return a handle to the global stream, that is, the current
global stream that rand generates random numbers from. Save the state of the global stream.

globalStream = RandStream.getGlobalStream;
myState = globalStream.State;

Using myState, you can restore the state of globalStream and reproduce previous results.

A = rand(1,100);
globalStream.State = myState;
B = rand(1,100);
isequal(A,B)

ans = logical
   1
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rand, randi, randn, and randperm access the global stream. Since all of these functions access the
same underlying stream, a call to one affects the values produced by the others at subsequent calls.

globalStream.State = myState;
A = rand(1,100);
globalStream.State = myState;
C = randi(100);
B = rand(1,100);
isequal(A,B)

ans = logical
   0

You can also reset a stream to its initial settings using the reset function.

reset(globalStream)
A = rand(1,100);
reset(globalStream)
B = rand(1,100);
isequal(A,B)

ans = logical
   1
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See Also
RandStream | rng

Related Examples
• “Managing the Global Stream Using RandStream” on page 3-16
• “Multiple Streams” on page 3-28
• “Controlling Random Number Generation” on page 3-36
• “Create Arrays of Random Numbers” on page 3-3
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Multiple Streams
Using Multiple Independent Streams

MATLAB® software includes generator algorithms that enable you to create multiple independent
random number streams. For example, the four generator types that support multiple independent
streams are the Combined Multiple Recursive ('mrg32k3a'), the Multiplicative Lagged Fibonacci
('mlfg6331_64'), the Philox 4x32 ('philox4x32_10'), and the Threefry 4x64 ('threefry4x64_20')
generators. You can create multiple independent streams that are guaranteed to not overlap, and for
which tests that demonstrate (pseudo)independence of the values between streams have been carried
out. For more information about generator algorithms that support multiple streams, see the table of
generator algorithms in “Choosing a Random Number Generator” on page 3-21.

The RandStream.create function enables you to create streams that have the same generator
algorithm and seed value, but are statistically independent.

[s1,s2,s3] = RandStream.create('mlfg6331_64','NumStreams',3)

s1 = 
mlfg6331_64 random stream
      StreamIndex: 1
       NumStreams: 3
             Seed: 0
  NormalTransform: Ziggurat

s2 = 
mlfg6331_64 random stream
      StreamIndex: 2
       NumStreams: 3
             Seed: 0
  NormalTransform: Ziggurat

s3 = 
mlfg6331_64 random stream
      StreamIndex: 3
       NumStreams: 3
             Seed: 0
  NormalTransform: Ziggurat

As evidence of independence, you can see that these streams are largely uncorrelated.

r1 = rand(s1,100000,1);
r2 = rand(s2,100000,1); 
r3 = rand(s3,100000,1);
corrcoef([r1,r2,r3])

ans = 3×3

    1.0000    0.0007    0.0052
    0.0007    1.0000    0.0000
    0.0052    0.0000    1.0000

Depending on the application, creating only some of the streams in a set of independent streams can
be useful if you need to simulate some events. Specify the StreamIndices parameter to create only
some of the streams from a set of multiple streams. The StreamIndex property returns the index of
each stream you create.
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numLabs = 256;
labIndex = 4;
s4 = RandStream.create('mlfg6331_64','NumStreams',numLabs,'StreamIndices',labIndex)

s4 = 
mlfg6331_64 random stream
      StreamIndex: 4
       NumStreams: 256
             Seed: 0
  NormalTransform: Ziggurat

Multiple streams, since they are statistically independent, can be used to verify the precision of a
simulation. For example, a set of independent streams can be used to repeat a Monte Carlo
simulation several times in different MATLAB sessions or on different processors and determine the
variance in the results. This makes multiple streams useful in large-scale parallel simulations.

Using Seeds to Get Different Results

For generator types that do not explicitly support independent streams, different seeds provide a
method to create multiple streams. By using different seeds, you can create streams that return
different values and act separately from one another. However, using a generator specifically
designed for multiple independent streams is a better option, as the statistical properties across
streams have been carefully verified.

Create two streams with different seeds by using the Mersenne twister generator.

s1 = RandStream('mt19937ar','Seed',1)

s1 = 
mt19937ar random stream
             Seed: 1
  NormalTransform: Ziggurat

s2 = RandStream('mt19937ar','Seed',2)

s2 = 
mt19937ar random stream
             Seed: 2
  NormalTransform: Ziggurat

Use the first stream in one MATLAB session to generate random numbers.

r1 = rand(s1,100000,1);

Use the second stream in another MATLAB session to generate random numbers.

r2 = rand(s2,100000,1);

With different seeds, streams typically return values that are uncorrelated.

corrcoef([r1,r2])

ans = 2×2

    1.0000    0.0030
    0.0030    1.0000
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The two streams with different seeds may appear uncorrelated since the state space of the Mersenne
Twister is so much larger (219937 elements) than the number of possible seeds (232). The chances of
overlap in different simulation runs are pretty remote unless you use a large number of different
seeds. Using widely spaced seeds does not increase the level of randomness. In fact, taking this
strategy to the extreme and reseeding a generator before each call can result in the sequence of
values that are not statistically independent and identically distributed.

Seeding a stream is most useful if you use it as an initialization step, perhaps at MATLAB startup, or
before running a simulation.

Using Substreams to Get Different Results

Another method to get different results from a stream is to use substreams. Unlike seeds, where the
locations along the sequence of random numbers are not exactly known, the spacing between
substreams is known, so any chance of overlap can be eliminated. Like independent parallel streams,
research has been done to demonstrate statistical independence across substreams. In short,
substreams are a more controlled way to do many of the same things that seeds have traditionally
been used for, and a more lightweight solution than parallel streams.

Substreams provide a quick and easy way to ensure that you get different results from the same code
at different times. For example, generate several random numbers in a loop.

defaultStream = RandStream('mlfg6331_64');
RandStream.setGlobalStream(defaultStream)
for i = 1:5
    defaultStream.Substream = i;
    z = rand(1,i)
end

z = 0.6986

z = 1×2

    0.9230    0.2489

z = 1×3

    0.0261    0.2530    0.0737

z = 1×4

    0.3220    0.7405    0.1983    0.1052

z = 1×5

    0.2067    0.2417    0.9777    0.5970    0.4187

In another loop, you can generate random values that are independent from the first set of 5
iterations.

for i = 6:10
    defaultStream.Substream = i;
    z = rand(1,11-i)
end
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z = 1×5

    0.2650    0.8229    0.2479    0.0247    0.4581

z = 1×4

    0.3963    0.7445    0.7734    0.9113

z = 1×3

    0.2758    0.3662    0.7979

z = 1×2

    0.6814    0.5150

z = 0.5247

Each of these substreams can reproduce its loop iteration. For example, you can return to the 6th
substream in the loop.

defaultStream.Substream = 6;
z = rand(1,5)

z = 1×5

    0.2650    0.8229    0.2479    0.0247    0.4581

See Also
RandStream | rng

Related Examples
• “Managing the Global Stream Using RandStream” on page 3-16
• “Controlling Random Number Generation” on page 3-36
• “Choosing a Random Number Generator” on page 3-21
• “Create Arrays of Random Numbers” on page 3-3
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Replace Discouraged Syntaxes of rand and randn
In this section...
“Description of the Discouraged Syntaxes” on page 3-32
“Description of Replacement Syntaxes” on page 3-32
“Replacement Syntaxes for Initializing the Generator with an Integer Seed” on page 3-33
“Replacement Syntaxes for Initializing the Generator with a State Vector” on page 3-34
“If You Are Unable to Upgrade from Discouraged Syntax” on page 3-34

Description of the Discouraged Syntaxes
In earlier versions of MATLAB, you controlled the random number generator used by the rand and
randn functions with the 'seed', 'state' or 'twister' inputs. For example:

rand('seed',sd)
randn('seed',sd)
rand('state',s)
randn('state',s)
rand('twister',5489)

These syntaxes referred to different types of generators, and they are no longer recommended for the
following reasons:

• The terms 'seed' and 'state' are misleading names for the generators.
• All of the generators except 'twister' are flawed.
• They unnecessarily use different generators for rand and randn.

To assess the impact of replacing discouraged syntaxes in your existing code, execute the following
commands at the start of your MATLAB session:

warning('on','MATLAB:RandStream:ActivatingLegacyGenerators')
warning('on','MATLAB:RandStream:ReadingInactiveLegacyGeneratorState') 

Description of Replacement Syntaxes
Use the rng function to control the shared generator used by rand, randn, randi and all other
random number generation functions like randperm, sprand, and so on. To learn how to use the rng
function when replacing discouraged syntaxes, take a few moments to understand their function. This
should help you to see which new rng syntax best suits your needs.

The first input to rand(Generator,s) or randn(Generator,s) specified the type of the
generator, as described here.

Generator = 'seed' referred to the MATLAB v4 generator, not to the seed initialization value.

Generator = 'state' referred to the MATLAB v5 generators, not to the internal state of the
generator.

Generator = 'twister' referred to the Mersenne Twister generator, now the MATLAB startup
generator.
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The v4 and v5 generators are no longer recommended unless you are trying to exactly reproduce the
random numbers generated in earlier versions of MATLAB. The simplest way to update your code is
to use rng. The rng function replaces the names for the rand and randn generators as follows.

rand/randn Generator Name rng Generator Name
'seed' 'v4'
'state' 'v5uniform' (for rand)

                  or
'v5normal' (for randn)

'twister' 'twister' (recommended)

Replacement Syntaxes for Initializing the Generator with an Integer
Seed
The most common uses of the integer seed sd in the rand(Generator,sd) syntax were to:

• Reproduce exactly the same random numbers each time (e.g., by using a seed such as 0, 1, or
3141879)

• Try to ensure that MATLAB always gives different random numbers in separate runs (for example,
by using a seed such as sum(100*clock))

The following table shows replacements for syntaxes with an integer seed sd.

• The first column shows the discouraged syntax with rand and randn.
• The second column shows how to exactly reproduce the discouraged behavior with the new rng

function. In most cases, this is done by specifying a legacy generator type such as the v4 or v5
generators, which is no longer recommended.

• The third column shows the recommended alternative, which does not specify the optional
generator type input to rng. Therefore, if you always omit the Generator input, rand, randn,
and randi just use the default Mersenne Twister generator that is used at MATLAB startup. In
future releases when new generators supersede the Mersenne Twister, this code will use the new
default.

Discouraged rand/randn Syntax Not Recommended: Reproduce
Discouraged Behavior Exactly By
Specifying Generator Type

Recommended
Alternative: Does
Not Override
Generator Type

rand('twister',5489) rng(5489,'twister') rng('default')
rand('seed',sd) rng(sd,'v4') rng(sd)
randn('seed',sd)
rand('state',sd) rng(sd,'v5uniform')
randn('state',sd) rng(sd,'v5normal')
rand('seed',sum(100*clock)) rng(sum(100*clock),'v4') rng('shuffle')
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Replacement Syntaxes for Initializing the Generator with a State
Vector
The most common use of the state vector (shown here as st) in the rand(Generator,st) syntax
was to reproduce exactly the random numbers generated at a specific point in an algorithm or
iteration. For example, you could use this vector as an aid in debugging.

The rng function changes the pattern of saving and restoring the state of the random number
generator as shown in the next table. The example in the left column assumes that you are using the
v5 uniform generator. The example in the right column uses the new syntax, and works for any
generator you use.

Discouraged Syntax Using rand/randn New Syntax Using rng
% Save v5 generator state.
st = rand('state');

% Call rand.
x = rand;

% Restore v5 generator state.
rand('state',st);

% Call rand again and hope 
% for the same results.
y = rand

% Get generator settings.
s = rng;

% Call rand.
x = rand;

% Restore previous generator 
% settings.
rng(s);

% Call rand again and 
% get the same results.
y = rand

For a demonstration, see this instructional video.

If You Are Unable to Upgrade from Discouraged Syntax
If there is code that you are not able or not permitted to modify and you know that it uses the
discouraged random number generator control syntaxes, it is important to remember that when you
use that code MATLAB will switch into legacy mode. In legacy mode, rand and randn are controlled
by separate generators, each with their own settings.

Calls to rand in legacy mode use one of the following:

• The 'v4' generator, controlled by rand('seed', ...)
• The 'v5uniform' generator, controlled by rand('state', ...)
• The 'twister' generator, controlled by rand('twister', ...)

Calls to randn in legacy mode use one of the following:

• The 'v4' generator, controlled by randn('seed', ...)
• The 'v5normal' generator, controlled by randn('state', ...)

If code that you rely on puts MATLAB into legacy mode, use the following command to escape legacy
mode and get back to the default startup generator:

rng default

Alternatively, to guard around code that puts MATLAB into legacy mode, use:
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s = rng     % Save current settings of the generator.
  ...       % Call code using legacy random number generator syntaxes.
rng(s)      % Restore previous settings of the generator.

See Also
rand | randn | rng

Related Examples
• “Create Arrays of Random Numbers” on page 3-3
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Controlling Random Number Generation
This example shows how to use the rng function, which provides control over random number
generation.

(Pseudo)Random numbers in MATLAB come from the rand, randi, and randn functions. Many other
functions call those three, but those are the fundamental building blocks. All three depend on a single
shared random number generator that you can control using rng.

It's important to realize that "random" numbers in MATLAB are not unpredictable at all, but are
generated by a deterministic algorithm. The algorithm is designed to be sufficiently complicated so
that its output appears to be an independent random sequence to someone who does not know the
algorithm, and can pass various statistical tests of randomness. The function that is introduced here
provides ways to take advantage of the determinism to

• repeat calculations that involve random numbers, and get the same results, or
• guarantee that different random numbers are used in repeated calculations

and to take advantage of the apparent randomness to justify combining results from separate
calculations.

"Starting Over"

If you look at the output from rand, randi, or randn in a new MATLAB session, you'll notice that
they return the same sequences of numbers each time you restart MATLAB. It's often useful to be
able to reset the random number generator to that startup state, without actually restarting MATLAB.
For example, you might want to repeat a calculation that involves random numbers, and get the same
result.

rng provides a very simple way to put the random number generator back to its default settings.

rng default
rand % returns the same value as at startup

ans = 0.8147

What are the "default" random number settings that MATLAB starts up with, or that rng default
gives you? If you call rng with no inputs, you can see that it is the Mersenne Twister generator
algorithm, seeded with 0.

rng

ans = struct with fields:
     Type: 'twister'
     Seed: 0
    State: [625x1 uint32]

You'll see in more detail below how to use the above output, including the State field, to control and
change how MATLAB generates random numbers. For now, it serves as a way to see what generator
rand, randi, and randn are currently using.

Non-Repeatability

Each time you call rand, randi, or randn, they draw a new value from their shared random number
generator, and successive values can be treated as statistically independent. But as mentioned above,
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each time you restart MATLAB those functions are reset and return the same sequences of numbers.
Obviously, calculations that use the same "random" numbers cannot be thought of as statistically
independent. So when it's necessary to combine calculations done in two or more MATLAB sessions
as if they were statistically independent, you cannot use the default generator settings.

One simple way to avoid repeating the same random numbers in a new MATLAB session is to choose
a different seed for the random number generator. rng gives you an easy way to do that, by creating
a seed based on the current time.

rng shuffle
rand

ans = 0.6491

Each time you use 'shuffle', it reseeds the generator with a different seed. You can call rng with
no inputs to see what seed it actually used.

rng

ans = struct with fields:
     Type: 'twister'
     Seed: 687007062
    State: [625x1 uint32]

rng shuffle % creates a different seed each time
rng

ans = struct with fields:
     Type: 'twister'
     Seed: 687007065
    State: [625x1 uint32]

rand

ans = 0.0236

'shuffle' is a very easy way to reseed the random number generator. You might think that it's a
good idea, or even necessary, to use it to get "true" randomness in MATLAB. For most purposes,
though, it is not necessary to use 'shuffle' at all. Choosing a seed based on the current time does
not improve the statistical properties of the values you'll get from rand, randi, and randn, and does
not make them "more random" in any real sense. While it is perfectly fine to reseed the generator
each time you start up MATLAB, or before you run some kind of large calculation involving random
numbers, it is actually not a good idea to reseed the generator too frequently within a session,
because this can affect the statistical properties of your random numbers.

What 'shuffle' does provide is a way to avoid repeating the same sequences of values. Sometimes
that is critical, sometimes it's just "nice", but often it is not important at all. Bear in mind that if you
use 'shuffle', you may want to save the seed that rng created so that you can repeat your
calculations later on. You'll see how to do that below.

More Control over Repeatability and Non-Repeatability

So far, you've seen how to reset the random number generator to its default settings, and reseed it
using a seed that is created using the current time. rng also provides a way to reseed it using a
specific seed.
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You can use the same seed several times, to repeat the same calculations. For example, if you run this
code twice ...

rng(1) % the seed is any non-negative integer < 2^32
x = randn(1,5)

x = 1×5

   -0.6490    1.1812   -0.7585   -1.1096   -0.8456

rng(1)
x = randn(1,5)

x = 1×5

   -0.6490    1.1812   -0.7585   -1.1096   -0.8456

... you get exactly the same results. You might do this to recreate x after having cleared it, so that you
can repeat what happens in subsequent calculations that depend on x, using those specific values.

On the other hand, you might want to choose different seeds to ensure that you don't repeat the same
calculations. For example, if you run this code in one MATLAB session ...

rng(2)
x2 = sum(randn(50,1000),1); % 1000 trials of a random walk

and this code in another ...

rng(3)
x3 = sum(randn(50,1000),1);

... you could combine the two results and be confident that they are not simply the same results
repeated twice.

x = [x2 x3];

As with 'shuffle' there is a caveat when reseeding MATLAB's random number generator, because
it affects all subsequent output from rand, randi, and randn. Unless you need repeatability or
uniqueness, it is usually advisable to simply generate random values without reseeding the generator.
If you do need to reseed the generator, that is usually best done at the command line, or in a spot in
your code that is not easily overlooked.

Choosing a Generator Type

Not only can you reseed the random number generator as shown above, you can also choose the type
of random number generator that you want to use. Different generator types produce different
sequences of random numbers, and you might, for example, choose a specific type because of its
statistical properties. Or you might need to recreate results from an older version of MATLAB that
used a different default generator type.

One other common reason for choosing the generator type is that you are writing a validation test
that generates "random" input data, and you need to guarantee that your test can always expect
exactly the same predictable result. If you call rng with a seed before creating the input data, it
reseeds the random number generator. But if the generator type has been changed for some reason,
then the output from rand, randi, and randn will not be what you expect from that seed. Therefore,
to be 100% certain of repeatability, you can also specify a generator type.
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For example,

rng(0,'twister')

causes rand, randi, and randn to use the Mersenne Twister generator algorithm, after seeding it
with 0.

Using 'combRecursive'

rng(0,'combRecursive')

selects the Combined Multiple Recursive generator algorithm, which supports some parallel features
that the Mersenne Twister does not.

This command

rng(0,'v4')

selects the generator algorithm that was the default in MATLAB 4.0.

And of course, this command returns the random number generator to its default settings.

rng default

However, because the default random number generator settings may change between MATLAB
releases, using 'default' does not guarantee predictable results over the long-term. 'default' is
a convenient way to reset the random number generator, but for even more predictability, specify a
generator type and a seed.

On the other hand, when you are working interactively and need repeatability, it is simpler, and
usually sufficient, to call rng with just a seed.

Saving and Restoring Random Number Generator Settings

Calling rng with no inputs returns a scalar structure with fields that contain two pieces of
information described already: the generator type, and the integer with which the generator was last
reseeded.

s = rng

s = struct with fields:
     Type: 'twister'
     Seed: 0
    State: [625x1 uint32]

The third field, State, contains a copy of the generator's current state vector. This state vector is the
information that the generator maintains internally in order to generate the next value in its
sequence of random numbers. Each time you call rand, randi, or randn, the generator that they
share updates its internal state. Thus, the state vector in the settings structure returned by rng
contains the information necessary to repeat the sequence, beginning from the point at which the
state was captured.

While just being able to see this output is informative, rng also accepts a settings structure as an
input, so that you can save the settings, including the state vector, and restore them later to repeat
calculations. Because the settings contain the generator type, you'll know exactly what you're getting,
and so "later" might mean anything from moments later in the same MATLAB session, to years (and
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multiple MATLAB releases) later. You can repeat results from any point in the random number
sequence at which you saved the generator settings. For example

x1 = randn(10,10); % move ahead in the random number sequence
s = rng;           % save the settings at this point
x2 = randn(1,5)

x2 = 1×5

    0.8404   -0.8880    0.1001   -0.5445    0.3035

x3 = randn(5,5);   % move ahead in the random number sequence
rng(s);            % return the generator back to the saved state
x2 = randn(1,5)    % repeat the same numbers

x2 = 1×5

    0.8404   -0.8880    0.1001   -0.5445    0.3035

Notice that while reseeding provides only a coarse reinitialization, saving and restoring the generator
state using the settings structure allows you to repeat any part of the random number sequence.

The most common way to use a settings structure is to restore the generator state. However, because
the structure contains not only the state, but also the generator type and seed, it's also a convenient
way to temporarily switch generator types. For example, if you need to create values using one of the
legacy generators from MATLAB 5.0, you can save the current settings at the same time that you
switch to use the old generator ...

previousSettings = rng(0,'v5uniform')

previousSettings = struct with fields:
     Type: 'twister'
     Seed: 0
    State: [625x1 uint32]

... and then restore the original settings later.

rng(previousSettings)

You should not modify the contents of any of the fields in a settings structure. In particular, you
should not construct your own state vector, or even depend on the format of the generator state.

Writing Simpler, More Flexible, Code

rng allows you to either

• reseed the random number generator, or
• save and restore random number generator settings

without having to know what type it is. You can also return the random number generator to its
default settings without having to know what those settings are. While there are situations when you
might want to specify a generator type, rng affords you the simplicity of not having to specify it.
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If you are able to avoid specifying a generator type, your code will automatically adapt to cases where
a different generator needs to be used, and will automatically benefit from improved properties in a
new default random number generator type.

rng and RandStream

rng provides a convenient way to control random number generation in MATLAB for the most
common needs. However, more complicated situations involving multiple random number streams
and parallel random number generation require a more complicated tool. The RandStream class is
that tool, and it provides the most powerful way to control random number generation. The two tools
are complementary, with rng providing a much simpler and concise syntax that is built on top of the
flexibility of RandStream.
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Sparse Matrices

• “Computational Advantages of Sparse Matrices” on page 4-2
• “Constructing Sparse Matrices” on page 4-4
• “Accessing Sparse Matrices” on page 4-8
• “Sparse Matrix Operations” on page 4-14
• “Finite Difference Laplacian” on page 4-28
• “Graphical Representation of Sparse Matrices” on page 4-32
• “Graphs and Matrices” on page 4-38
• “Sparse Matrix Reordering” on page 4-44
• “Iterative Methods for Linear Systems” on page 4-56
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Computational Advantages of Sparse Matrices

In this section...
“Memory Management” on page 4-2
“Computational Efficiency” on page 4-2

Memory Management
Using sparse matrices to store data that contains a large number of zero-valued elements can both
save a significant amount of memory and speed up the processing of that data. sparse is an attribute
that you can assign to any two-dimensional MATLAB matrix that is composed of double or logical
elements.

The sparse attribute allows MATLAB to:

• Store only the nonzero elements of the matrix, together with their indices.
• Reduce computation time by eliminating operations on zero elements.

For full matrices, MATLAB stores every matrix element internally. Zero-valued elements require the
same amount of storage space as any other matrix element. For sparse matrices, however, MATLAB
stores only the nonzero elements and their indices. For large matrices with a high percentage of zero-
valued elements, this scheme significantly reduces the amount of memory required for data storage.

The whos command provides high-level information about matrix storage, including size and storage
class. For example, this whos listing shows information about sparse and full versions of the same
matrix.

M_full = magic(1100);          % Create 1100-by-1100 matrix.
M_full(M_full > 50) = 0;       % Set elements >50 to zero.
M_sparse = sparse(M_full);     % Create sparse matrix of same.

whos

  Name             Size                Bytes  Class     Attributes

  M_full        1100x1100            9680000  double              
  M_sparse      1100x1100               9608  double    sparse  

Notice that the number of bytes used is fewer in the sparse case, because zero-valued elements are
not stored.

Computational Efficiency
Sparse matrices also have significant advantages in terms of computational efficiency. Unlike
operations with full matrices, operations with sparse matrices do not perform unnecessary low-level
arithmetic, such as zero-adds (x+0 is always x). The resulting efficiencies can lead to dramatic
improvements in execution time for programs working with large amounts of sparse data.
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See Also

More About
• “Sparse Matrix Operations” on page 4-14
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Constructing Sparse Matrices

In this section...
“Creating Sparse Matrices” on page 4-4
“Importing Sparse Matrices” on page 4-7

Creating Sparse Matrices
MATLAB never creates sparse matrices automatically. Instead, you must determine if a matrix
contains a large enough percentage of zeros to benefit from sparse techniques.

The density of a matrix is the number of nonzero elements divided by the total number of matrix
elements. For matrix M, this would be

nnz(M) / prod(size(M));

or

nnz(M) / numel(M);

Matrices with very low density are often good candidates for use of the sparse format.

Converting Full to Sparse

You can convert a full matrix to sparse storage using the sparse function with a single argument.

For example:

A = [ 0   0   0   5
      0   2   0   0
      1   3   0   0
      0   0   4   0];
S = sparse(A)

 S =
     
   (3,1)        1
   (2,2)        2
   (3,2)        3
   (4,3)        4
   (1,4)        5

The printed output lists the nonzero elements of S, together with their row and column indices. The
elements are sorted by columns, reflecting the internal data structure.

You can convert a sparse matrix to full storage using the full function, provided the matrix order is
not too large. For example, A = full(S) reverses the example conversion.

Converting a full matrix to sparse storage is not the most frequent way of generating sparse matrices.
If the order of a matrix is small enough that full storage is possible, then conversion to sparse storage
rarely offers significant savings.
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Creating Sparse Matrices Directly

You can create a sparse matrix from a list of nonzero elements using the sparse function with five
arguments.

S = sparse(i,j,s,m,n)

i and j are vectors of row and column indices, respectively, for the nonzero elements of the matrix. s
is a vector of nonzero values whose indices are specified by the corresponding (i,j) pairs. m is the
row dimension of the resulting matrix, and n is the column dimension.

The matrix S of the previous example can be generated directly with

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)

S =

   (3,1)        1
   (2,2)        2
   (3,2)        3
   (4,3)        4
   (1,4)        5

The sparse command has a number of alternate forms. The example above uses a form that sets the
maximum number of nonzero elements in the matrix to length(s). If desired, you can append a
sixth argument that specifies a larger maximum, allowing you to add nonzero elements later without
reallocating the sparse matrix.

The matrix representation of the second difference operator is a good example of a sparse matrix. It
is a tridiagonal matrix with -2s on the diagonal and 1s on the super- and subdiagonal. There are many
ways to generate it—here's one possibility.

n = 5;
D = sparse(1:n,1:n,-2*ones(1,n),n,n);
E = sparse(2:n,1:n-1,ones(1,n-1),n,n);
S = E+D+E'

S =

   (1,1)       -2
   (2,1)        1
   (1,2)        1
   (2,2)       -2
   (3,2)        1
   (2,3)        1
   (3,3)       -2
   (4,3)        1
   (3,4)        1
   (4,4)       -2
   (5,4)        1
   (4,5)        1
   (5,5)       -2

Now F = full(S) displays the corresponding full matrix.

F = full(S)

F =
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    -2     1     0     0     0
     1    -2     1     0     0
     0     1    -2     1     0
     0     0     1    -2     1
     0     0     0     1    -2

Creating Sparse Matrices from Their Diagonal Elements

Creating sparse matrices based on their diagonal elements is a common operation, so the function
spdiags handles this task. Its syntax is

S = spdiags(B,d,m,n)

To create an output matrix S of size m-by-n with elements on p diagonals:

• B is a matrix of size min(m,n)-by-p. The columns of B are the values to populate the diagonals of
S.

• d is a vector of length p whose integer elements specify which diagonals of S to populate.

That is, the elements in column j of B fill the diagonal specified by element j of d.

Note If a column of B is longer than the diagonal it's replacing, super-diagonals are taken from the
lower part of the column of B, and sub-diagonals are taken from the upper part of the column of B.

As an example, consider the matrix B and the vector d.

B = [ 41    11     0
      52    22     0
      63    33    13
      74    44    24 ];

d = [-3
      0
      2];

Use these matrices to create a 7-by-4 sparse matrix A:

A = spdiags(B,d,7,4)

A =

   (1,1)       11
   (4,1)       41
   (2,2)       22
   (5,2)       52
   (1,3)       13
   (3,3)       33
   (6,3)       63
   (2,4)       24
   (4,4)       44
   (7,4)       74

In its full form, A looks like this:

full(A)
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ans =

    11     0    13     0
     0    22     0    24
     0     0    33     0
    41     0     0    44
     0    52     0     0
     0     0    63     0
     0     0     0    74

spdiags can also extract diagonal elements from a sparse matrix, or replace matrix diagonal
elements with new values. Type help spdiags for details.

Importing Sparse Matrices
You can import sparse matrices from computations outside the MATLAB environment. Use the
spconvert function in conjunction with the load command to import text files containing lists of
indices and nonzero elements. For example, consider a three-column text file T.dat whose first
column is a list of row indices, second column is a list of column indices, and third column is a list of
nonzero values. These statements load T.dat into MATLAB and convert it into a sparse matrix S:

load T.dat
S = spconvert(T)

The save and load commands can also process sparse matrices stored as binary data in MAT-files.

See Also
sparse | spconvert

More About
• “Sparse Matrix Operations” on page 4-14
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Accessing Sparse Matrices
In this section...
“Nonzero Elements” on page 4-8
“Indices and Values” on page 4-9
“Indexing in Sparse Matrix Operations” on page 4-9
“Visualizing Sparse Matrices” on page 4-12

Nonzero Elements
There are several commands that provide high-level information about the nonzero elements of a
sparse matrix:

• nnz returns the number of nonzero elements in a sparse matrix.
• nonzeros returns a column vector containing all the nonzero elements of a sparse matrix.
• nzmax returns the amount of storage space allocated for the nonzero entries of a sparse matrix.

To try some of these, load the supplied sparse matrix west0479, one of the Harwell-Boeing
collection.

load west0479
whos

  Name            Size             Bytes  Class     Attributes

  west0479      479x479            34032  double    sparse   

This matrix models an eight-stage chemical distillation column.

Try these commands.

nnz(west0479)

ans =

        1887

format short e
west0479

west0479 =

  (25,1)      1.0000e+00
  (31,1)     -3.7648e-02
  (87,1)     -3.4424e-01
  (26,2)      1.0000e+00
  (31,2)     -2.4523e-02
  (88,2)     -3.7371e-01
  (27,3)      1.0000e+00
  (31,3)     -3.6613e-02
  (89,3)     -8.3694e-01
  (28,4)      1.3000e+02
     .
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     .
     .

nonzeros(west0479)

ans =

   1.0000e+00
  -3.7648e-02
  -3.4424e-01
   1.0000e+00
  -2.4523e-02
  -3.7371e-01
   1.0000e+00
  -3.6613e-02
  -8.3694e-01
   1.3000e+02
    .
    .
    .

Note Use Ctrl+C to stop the nonzeros listing at any time.

Note that initially nnz has the same value as nzmax by default. That is, the number of nonzero
elements is equivalent to the number of storage locations allocated for nonzeros. However, MATLAB
does not dynamically release memory if you zero out additional array elements. Changing the value of
some matrix elements to zero changes the value of nnz, but not that of nzmax.

However, you can add as many nonzero elements to the matrix as desired. You are not constrained by
the original value of nzmax.

Indices and Values
For any matrix, full or sparse, the find function returns the indices and values of nonzero elements.
Its syntax is

[i,j,s] = find(S);

find returns the row indices of nonzero values in vector i, the column indices in vector j, and the
nonzero values themselves in the vector s. The example below uses find to locate the indices and
values of the nonzeros in a sparse matrix. The sparse function uses the find output, together with
the size of the matrix, to recreate the matrix.

S1 = west0479;
[i,j,s] = find(S1);
[m,n] = size(S1);
S2 = sparse(i,j,s,m,n);

Indexing in Sparse Matrix Operations
Because sparse matrices are stored in compressed sparse column format, there are different costs
associated with indexing into a sparse matrix than there are with indexing into a full matrix. Such
costs are negligible when you need to change only a few elements in a sparse matrix, so in those
cases it’s normal to use regular array indexing to reassign values:
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B = speye(4);
[i,j,s] = find(B);
[i,j,s]

ans =

     1     1     1
     2     2     1
     3     3     1
     4     4     1

B(3,1) = 42;
[i,j,s] = find(B);
[i,j,s]

ans =

     1     1     1
     3     1    42
     2     2     1
     3     3     1
     4     4     1

In order to store the new matrix with 42 at (3,1), MATLAB inserts an additional row into the
nonzero values vector and subscript vectors, then shifts all matrix values after (3,1).

Using linear indexing to access or assign an element in a large sparse matrix will fail if the linear
index exceeds 2^48-1, which is the current upper bound for the number of elements allowed in a
matrix.

S = spalloc(2^30,2^30,2);
S(end) = 1

Maximum variable size allowed by the program is exceeded.

To access an element whose linear index is greater than intmax, use array indexing:

S(2^30,2^30) = 1

S =

         (1073741824,1073741824)              1

While the cost of indexing into a sparse matrix to change a single element is negligible, it is
compounded in the context of a loop and can become quite slow for large matrices. For that reason,
in cases where many sparse matrix elements need to be changed, it is best to vectorize the operation
instead of using a loop. For example, consider a sparse identity matrix:

n = 10000;
A = 4*speye(n);

Changing the elements of A within a loop takes is slower than a similar vectorized operation:

tic
A(1:n-1,n) = -1; 
A(n,1:n-1) = -1; 
toc

Elapsed time is 0.003344 seconds.
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tic
for k = 1:n-1
  C(k,n) = -1; 
  C(n,k) = -1; 
end
toc

Elapsed time is 0.448069 seconds.

Since MATLAB stores sparse matrices in compressed sparse column format, it needs to shift multiple
entries in A during each pass through the loop.

Preallocating the memory for a sparse matrix and then filling it in an element-wise manner similarly
causes a significant amount of overhead in indexing into the sparse array:

S1 = spalloc(1000,1000,100000);
tic;
for n = 1:100000
    i = ceil(1000*rand(1,1));
    j = ceil(1000*rand(1,1));
    S1(i,j) = rand(1,1);
end
toc

Elapsed time is 2.577527 seconds.

Constructing the vectors of indices and values eliminates the need to index into the sparse array, and
thus is significantly faster:

i = ceil(1000*rand(100000,1));
j = ceil(1000*rand(100000,1));
v = zeros(size(i));
for n = 1:100000
    v(n) = rand(1,1);
end

tic;
S2 = sparse(i,j,v,1000,1000);
toc

Elapsed time is 0.017676 seconds.

For that reason, it’s best to construct sparse matrices all at once using a construction function, like
the sparse or spdiags functions.

For example, suppose you wanted the sparse form of the coordinate matrix C:

C =

4 0 0 0 −1
0 4 0 0 −1
0 0 4 0 −1
0
1

0
1

0
1

4
1
−1
4

Construct the five-column matrix directly with the sparse function using the triplet pairs for the row
subscripts, column subscripts, and values:

i = [1 5 2 5 3 5 4 5 1 2 3 4 5]';
j = [1 1 2 2 3 3 4 4 5 5 5 5 5]';
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s = [4 1 4 1 4 1 4 1 -1 -1 -1 -1 4]';
C = sparse(i,j,s)

C =

   (1,1)        4
   (5,1)        1
   (2,2)        4
   (5,2)        1
   (3,3)        4
   (5,3)        1
   (4,4)        4
   (5,4)        1
   (1,5)       -1
   (2,5)       -1
   (3,5)       -1
   (4,5)       -1
   (5,5)        4

The ordering of the values in the output reflects the underlying storage by columns. For more
information on how MATLAB stores sparse matrices, see John R. Gilbert, Cleve Moler, and Robert
Schreiber's Sparse Matrices In Matlab: Design and Implementation, (SIAM Journal on Matrix Analysis
and Applications, 13:1, 333–356 (1992)).

Visualizing Sparse Matrices
It is often useful to use a graphical format to view the distribution of the nonzero elements within a
sparse matrix. The MATLAB spy function produces a template view of the sparsity structure, where
each point on the graph represents the location of a nonzero array element.

For example:

Load the supplied sparse matrix west0479, one of the Harwell-Boeing collection.

load west0479

View the sparsity structure.

spy(west0479)
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See Also
sparse

More About
• “Computational Advantages of Sparse Matrices” on page 4-2
• “Constructing Sparse Matrices” on page 4-4
• “Sparse Matrix Operations” on page 4-14
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Sparse Matrix Operations

Efficiency of Operations
Computational Complexity

The computational complexity of sparse operations is proportional to nnz, the number of nonzero
elements in the matrix. Computational complexity also depends linearly on the row size m and column
size n of the matrix, but is independent of the product m*n, the total number of zero and nonzero
elements.

The complexity of fairly complicated operations, such as the solution of sparse linear equations,
involves factors like ordering and fill-in, which are discussed in the previous section. In general,
however, the computer time required for a sparse matrix operation is proportional to the number of
arithmetic operations on nonzero quantities.

Algorithmic Details

Sparse matrices propagate through computations according to these rules:

• Functions that accept a matrix and return a scalar or constant-size vector always produce output
in full storage format. For example, the size function always returns a full vector, whether its
input is full or sparse.

• Functions that accept scalars or vectors and return matrices, such as zeros, ones, rand, and
eye, always return full results. This is necessary to avoid introducing sparsity unexpectedly. The
sparse analog of zeros(m,n) is simply sparse(m,n). The sparse analogs of rand and eye are
sprand and speye, respectively. There is no sparse analog for the function ones.

• Unary functions that accept a matrix and return a matrix or vector preserve the storage class of
the operand. If S is a sparse matrix, then chol(S) is also a sparse matrix, and diag(S) is a
sparse vector. Columnwise functions such as max and sum also return sparse vectors, even though
these vectors can be entirely nonzero. Important exceptions to this rule are the sparse and full
functions.

• Binary operators yield sparse results if both operands are sparse, and full results if both are full.
For mixed operands, the result is full unless the operation preserves sparsity. If S is sparse and F
is full, then S+F, S*F, and F\S are full, while S.*F and S&F are sparse. In some cases, the result
might be sparse even though the matrix has few zero elements.

• Matrix concatenation using either the cat function or square brackets produces sparse results for
mixed operands.

Permutations and Reordering
A permutation of the rows and columns of a sparse matrix S can be represented in two ways:

• A permutation matrix P acts on the rows of S as P*S or on the columns as S*P'.
• A permutation vector p, which is a full vector containing a permutation of 1:n, acts on the rows of

S as S(p,:), or on the columns as S(:,p).

For example:

p = [1 3 4 2 5]
I = eye(5,5);
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P = I(p,:)
e = ones(4,1);
S = diag(11:11:55) + diag(e,1) + diag(e,-1)

p =

     1     3     4     2     5

P =

     1     0     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     1     0     0     0
     0     0     0     0     1

S =

    11     1     0     0     0
     1    22     1     0     0
     0     1    33     1     0
     0     0     1    44     1
     0     0     0     1    55

You can now try some permutations using the permutation vector p and the permutation matrix P. For
example, the statements S(p,:) and P*S return the same matrix.

S(p,:)

ans =

    11     1     0     0     0
     0     1    33     1     0
     0     0     1    44     1
     1    22     1     0     0
     0     0     0     1    55

P*S

ans =

    11     1     0     0     0
     0     1    33     1     0
     0     0     1    44     1
     1    22     1     0     0
     0     0     0     1    55

Similarly, S(:,p) and S*P' both produce

S*P'

ans =

    11     0     0     1     0
     1     1     0    22     0
     0    33     1     1     0
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     0     1    44     0     1
     0     0     1     0    55

If P is a sparse matrix, then both representations use storage proportional to n and you can apply
either to S in time proportional to nnz(S). The vector representation is slightly more compact and
efficient, so the various sparse matrix permutation routines all return full row vectors with the
exception of the pivoting permutation in LU (triangular) factorization, which returns a matrix
compatible with the full LU factorization.

To convert between the two permutation representations:

n = 5;
I = speye(n);
Pr = I(p,:);
Pc = I(:,p);
pc = (1:n)*Pc

pc =

     1     3     4     2     5

pr = (Pr*(1:n)')'

pr =

     1     3     4     2     5

The inverse of P is simply R = P'. You can compute the inverse of p with r(p) = 1:n.

r(p) = 1:5

r =

     1     4     2     3     5

Reordering for Sparsity

Reordering the columns of a matrix can often make its LU or QR factors sparser. Reordering the rows
and columns can often make its Cholesky factors sparser. The simplest such reordering is to sort the
columns by nonzero count. This is sometimes a good reordering for matrices with very irregular
structures, especially if there is great variation in the nonzero counts of rows or columns.

The colperm computes a permutation that orders the columns of a matrix by the number of nonzeros
in each column from smallest to largest.

Reordering to Reduce Bandwidth

The reverse Cuthill-McKee ordering is intended to reduce the profile or bandwidth of the matrix. It is
not guaranteed to find the smallest possible bandwidth, but it usually does. The symrcm function
actually operates on the nonzero structure of the symmetric matrix A + A', but the result is also
useful for nonsymmetric matrices. This ordering is useful for matrices that come from one-
dimensional problems or problems that are in some sense long and thin.

Approximate Minimum Degree Ordering

The degree of a node in a graph is the number of connections to that node. This is the same as the
number of off-diagonal nonzero elements in the corresponding row of the adjacency matrix. The
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approximate minimum degree algorithm generates an ordering based on how these degrees are
altered during Gaussian elimination or Cholesky factorization. It is a complicated and powerful
algorithm that usually leads to sparser factors than most other orderings, including column count and
reverse Cuthill-McKee. Because keeping track of the degree of each node is very time-consuming, the
approximate minimum degree algorithm uses an approximation to the degree, rather than the exact
degree.

These MATLAB functions implement the approximate minimum degree algorithm:

• symamd — Use with symmetric matrices.
• colamd — Use with nonsymmetric matrices and symmetric matrices of the form A*A' or A'*A.

See “Reordering and Factorization of Sparse Matrices” on page 4-18 for an example using symamd.

You can change various parameters associated with details of the algorithms using the spparms
function.

For details on the algorithms used by colamd and symamd, see [5]. The approximate degree the
algorithms use is based on [1].

Nested Dissection Ordering

Like the approximate minimum degree ordering, the nested dissection ordering algorithm
implemented by the dissect function reorders the matrix rows and columns by considering the
matrix to be the adjacency matrix of a graph. The algorithm reduces the problem down to a much
smaller scale by collapsing together pairs of vertices in the graph. After reordering the small graph,
the algorithm then applies projection and refinement steps to expand the graph back to the original
size.

The nested dissection algorithm produces high quality reorderings and performs particularly well
with finite element matrices compared to other reordering techniques. For more information about
the nested dissection ordering algorithm, see [7].

Factoring Sparse Matrices
LU Factorization

If S is a sparse matrix, the following command returns three sparse matrices L, U, and P such that
P*S = L*U.

[L,U,P] = lu(S);

lu obtains the factors by Gaussian elimination with partial pivoting. The permutation matrix P has
only n nonzero elements. As with dense matrices, the statement [L,U] = lu(S) returns a permuted
unit lower triangular matrix and an upper triangular matrix whose product is S. By itself, lu(S)
returns L and U in a single matrix without the pivot information.

The three-output syntax [L,U,P] = lu(S) selects P via numerical partial pivoting, but does not
pivot to improve sparsity in the LU factors. On the other hand, the four-output syntax [L,U,P,Q] =
lu(S) selects P via threshold partial pivoting, and selects P and Q to improve sparsity in the LU
factors.

You can control pivoting in sparse matrices using

lu(S,thresh)
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where thresh is a pivot threshold in [0,1]. Pivoting occurs when the diagonal entry in a column has
magnitude less than thresh times the magnitude of any sub-diagonal entry in that column. thresh
= 0 forces diagonal pivoting. thresh = 1 is the default. (The default for thresh is 0.1 for the four-
output syntax).

When you call lu with three or less outputs, MATLAB automatically allocates the memory necessary
to hold the sparse L and U factors during the factorization. Except for the four-output syntax,
MATLAB does not use any symbolic LU prefactorization to determine the memory requirements and
set up the data structures in advance.

Reordering and Factorization of Sparse Matrices

This example shows the effects of reordering and factorization on sparse matrices.

If you obtain a good column permutation p that reduces fill-in, perhaps from symrcm or colamd, then
computing lu(S(:,p)) takes less time and storage than computing lu(S).

Create a sparse matrix using the Bucky ball example.

B = bucky;

B has exactly three nonzero elements in each row and column.

Create two permutations, r and m using symrcm and symamd respectively.

r = symrcm(B);
m = symamd(B);

The two permutations are the symmetric reverse Cuthill-McKee ordering and the symmetric
approximate minimum degree ordering.

Create spy plots to show the three adjacency matrices of the Bucky Ball graph with these three
different numberings. The local, pentagon-based structure of the original numbering is not evident in
the others.

figure
subplot(1,3,1)
spy(B)
title('Original')

subplot(1,3,2)
spy(B(r,r))
title('Reverse Cuthill-McKee')

subplot(1,3,3)
spy(B(m,m))
title('Min Degree')

4 Sparse Matrices

4-18



The reverse Cuthill-McKee ordering, r, reduces the bandwidth and concentrates all the nonzero
elements near the diagonal. The approximate minimum degree ordering, m, produces a fractal-like
structure with large blocks of zeros.

To see the fill-in generated in the LU factorization of the Bucky ball, use speye, the sparse identity
matrix, to insert -3s on the diagonal of B.

B = B - 3*speye(size(B));

Since each row sum is now zero, this new B is actually singular, but it is still instructive to compute
its LU factorization. When called with only one output argument, lu returns the two triangular
factors, L and U, in a single sparse matrix. The number of nonzeros in that matrix is a measure of the
time and storage required to solve linear systems involving B.

Here are the nonzero counts for the three permutations being considered.

• lu(B) (Original): 1022
• lu(B(r,r)) (Reverse Cuthill-McKee): 968
• lu(B(m,m)) (Approximate minimum degree): 636

Even though this is a small example, the results are typical. The original numbering scheme leads to
the most fill-in. The fill-in for the reverse Cuthill-McKee ordering is concentrated within the band, but
it is almost as extensive as the first two orderings. For the approximate minimum degree ordering,
the relatively large blocks of zeros are preserved during the elimination and the amount of fill-in is
significantly less than that generated by the other orderings.
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The spy plots below reflect the characteristics of each reordering.

figure
subplot(1,3,1)
spy(lu(B))
title('Original')

subplot(1,3,2)
spy(lu(B(r,r)))
title('Reverse Cuthill-McKee')

subplot(1,3,3)
spy(lu(B(m,m)))
title('Min Degree')

Cholesky Factorization

If S is a symmetric (or Hermitian), positive definite, sparse matrix, the statement below returns a
sparse, upper triangular matrix R so that R'*R = S.

R = chol(S)

chol does not automatically pivot for sparsity, but you can compute approximate minimum degree
and profile limiting permutations for use with chol(S(p,p)).

Since the Cholesky algorithm does not use pivoting for sparsity and does not require pivoting for
numerical stability, chol does a quick calculation of the amount of memory required and allocates all
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the memory at the start of the factorization. You can use symbfact, which uses the same algorithm
as chol, to calculate how much memory is allocated.

QR Factorization

MATLAB computes the complete QR factorization of a sparse matrix S with

 [Q,R] = qr(S)

or

[Q,R,E] = qr(S)

but this is often impractical. The unitary matrix Q often fails to have a high proportion of zero
elements. A more practical alternative, sometimes known as “the Q-less QR factorization,” is
available.

With one sparse input argument and one output argument

R = qr(S)

returns just the upper triangular portion of the QR factorization. The matrix R provides a Cholesky
factorization for the matrix associated with the normal equations:

R'*R = S'*S

However, the loss of numerical information inherent in the computation of S'*S is avoided.

With two input arguments having the same number of rows, and two output arguments, the
statement

[C,R] = qr(S,B)

applies the orthogonal transformations to B, producing C = Q'*B without computing Q.

The Q-less QR factorization allows the solution of sparse least squares problems

minimize Ax− b 2

with two steps:

[c,R] = qr(A,b);
x = R\c

If A is sparse, but not square, MATLAB uses these steps for the linear equation solving backslash
operator:

x = A\b

Or, you can do the factorization yourself and examine R for rank deficiency.

It is also possible to solve a sequence of least squares linear systems with different right-hand sides,
b, that are not necessarily known when R = qr(A) is computed. The approach solves the “semi-
normal equations R'*R*x = A'*b with

x = R\(R'\(A'*b))

and then employs one step of iterative refinement to reduce round off error:
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r = b - A*x;
e = R\(R'\(A'*r));
x = x + e

Incomplete Factorizations

The ilu and ichol functions provide approximate, incomplete factorizations, which are useful as
preconditioners for sparse iterative methods.

The ilu function produces three incomplete lower-upper (ILU) factorizations: the zero-fill ILU
(ILU(0)), a Crout version of ILU (ILUC(tau)), and ILU with threshold dropping and pivoting
(ILUTP(tau)). The ILU(0) never pivots and the resulting factors only have nonzeros in positions
where the input matrix had nonzeros. Both ILUC(tau) and ILUTP(tau), however, do threshold-
based dropping with the user-defined drop tolerance tau.

For example:

A = gallery('neumann', 1600) + speye(1600);

ans =

        7840

nnz(lu(A))

ans =

      126478

shows that A has 7840 nonzeros, and its complete LU factorization has 126478 nonzeros. On the
other hand, the following code shows the different ILU outputs:

[L,U] = ilu(A);
nnz(L)+nnz(U)-size(A,1)

ans =

        7840

norm(A-(L*U).*spones(A),'fro')./norm(A,'fro')

ans =

   4.8874e-17

opts.type = 'ilutp';
opts.droptol = 1e-4;
[L,U,P] = ilu(A, opts);
nnz(L)+nnz(U)-size(A,1)

ans =

       31147

norm(P*A - L*U,'fro')./norm(A,'fro')

ans =

   9.9224e-05
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opts.type = 'crout';
[L,U,P] = ilu(A, opts);
nnz(L)+nnz(U)-size(A,1)

ans =

       31083

norm(P*A-L*U,'fro')./norm(A,'fro')

ans =

   9.7344e-05

These calculations show that the zero-fill factors have 7840 nonzeros, the ILUTP(1e-4) factors have
31147 nonzeros, and the ILUC(1e-4) factors have 31083 nonzeros. Also, the relative error of the
product of the zero-fill factors is essentially zero on the pattern of A. Finally, the relative error in the
factorizations produced with threshold dropping is on the same order of the drop tolerance, although
this is not guaranteed to occur. See the ilu reference page for more options and details.

The ichol function provides zero-fill incomplete Cholesky factorizations (IC(0)) as well as
threshold-based dropping incomplete Cholesky factorizations (ICT(tau)) of symmetric, positive
definite sparse matrices. These factorizations are the analogs of the incomplete LU factorizations
above and have many of the same characteristics. For example:

A = delsq(numgrid('S',200));
nnz(A)

ans =

      195228

nnz(chol(A,'lower'))

ans =

     7762589

shows that A has 195228 nonzeros, and its complete Cholesky factorization without reordering has
7762589 nonzeros. By contrast:

L = ichol(A);
nnz(L)

ans =

      117216

norm(A-(L*L').*spones(A),'fro')./norm(A,'fro')

ans =

   3.5805e-17

opts.type = 'ict';
opts.droptol = 1e-4;
L = ichol(A,opts);
nnz(L)
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ans =

     1166754

norm(A-L*L','fro')./norm(A,'fro')

ans =

   2.3997e-04

IC(0) has nonzeros only in the pattern of the lower triangle of A, and on the pattern of A, the
product of the factors matches. Also, the ICT(1e-4) factors are considerably sparser than the
complete Cholesky factor, and the relative error between A and L*L' is on the same order of the
drop tolerance. It is important to note that unlike the factors provided by chol, the default factors
provided by ichol are lower triangular. See the ichol reference page for more information.

Eigenvalues and Singular Values
Two functions are available that compute a few specified eigenvalues or singular values. svds is
based on eigs.

Functions to Compute a Few Eigenvalues or Singular Values

Function Description
eigs Few eigenvalues
svds Few singular values

These functions are most frequently used with sparse matrices, but they can be used with full
matrices or even with linear operators defined in MATLAB code.

The statement

[V,lambda] = eigs(A,k,sigma)

finds the k eigenvalues and corresponding eigenvectors of the matrix A that are nearest the “shift”
sigma. If sigma is omitted, the eigenvalues largest in magnitude are found. If sigma is zero, the
eigenvalues smallest in magnitude are found. A second matrix, B, can be included for the generalized
eigenvalue problem: Aυ = λBυ.

The statement

[U,S,V] = svds(A,k)

finds the k largest singular values of A and

[U,S,V] = svds(A,k,'smallest')

finds the k smallest singular values.

The numerical techniques used in eigs and svds are described in [6].

Smallest Eigenvalue of Sparse Matrix

This example shows how to find the smallest eigenvalue and eigenvector of a sparse matrix.
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Set up the five-point Laplacian difference operator on a 65-by-65 grid in an L-shaped, two-
dimensional domain.

L = numgrid('L',65);
A = delsq(L);

Determine the order and number of nonzero elements.

size(A)

ans = 1×2

        2945        2945

nnz(A)

ans = 14473

A is a matrix of order 2945 with 14,473 nonzero elements.

Compute the smallest eigenvalue and eigenvector.

[v,d] = eigs(A,1,'smallestabs');

Distribute the components of the eigenvector over the appropriate grid points and produce a contour
plot of the result.

L(L>0) = full(v(L(L>0)));
x = -1:1/32:1;
contour(x,x,L,15)
axis square
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See Also

More About
• “Computational Advantages of Sparse Matrices” on page 4-2
• “Constructing Sparse Matrices” on page 4-4
• “Accessing Sparse Matrices” on page 4-8
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Finite Difference Laplacian
This example shows how to compute and represent the finite difference Laplacian on an L-shaped
domain.

Domain

The numgrid function numbers points within an L-shaped domain. The spy function is a useful tool
for visualizing the pattern of nonzero elements in a matrix. Use these two functions to generate and
display an L-shaped domain.

n = 32;
R = 'L';
G = numgrid(R,n);
spy(G)
title('A Finite Difference Grid')

Show a smaller version of the matrix as a sample.

g = numgrid(R,10)

g = 10×10

     0     0     0     0     0     0     0     0     0     0
     0     1     5     9    13    17    25    33    41     0
     0     2     6    10    14    18    26    34    42     0
     0     3     7    11    15    19    27    35    43     0
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     0     4     8    12    16    20    28    36    44     0
     0     0     0     0     0    21    29    37    45     0
     0     0     0     0     0    22    30    38    46     0
     0     0     0     0     0    23    31    39    47     0
     0     0     0     0     0    24    32    40    48     0
     0     0     0     0     0     0     0     0     0     0

Discrete Laplacian

Use delsq to generate the discrete Laplacian. Use the spy function again to get a graphical feel of
the matrix elements.

D = delsq(G);
spy(D)
title('The 5-Point Laplacian')

Determine the number of interior points.

N = sum(G(:)>0)

N = 675

Dirichlet Boundary Value Problem

Solve the Dirichlet boundary value problem for the sparse linear system. The problem setup is:

delsq(u) = 1 in the interior, u = 0 on the boundary.
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rhs = ones(N,1);
if (R == 'N') % For nested dissection, turn off minimum degree ordering.
   spparms('autommd',0)
   u = D\rhs;
   spparms('autommd',1)
else
   u = D\rhs; % This is used for R=='L' as in this example
end

Map the solution onto the L-shaped grid and plot it as a contour map.

U = G;
U(G>0) = full(u(G(G>0)));
clabel(contour(U));
prism
axis square ij

Now show the solution as a mesh plot.

mesh(U)
axis([0 n 0 n 0 max(max(U))])
axis square ij
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See Also
spy
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Graphical Representation of Sparse Matrices
This example shows the finite element mesh for a NASA airfoil, including two trailing flaps. More
information about the history of airfoils is available at NACA Airfoils (nasa.gov).

The data is stored in the file airfoil.mat. The data consists of 4253 pairs of (x,y) coordinates of the
mesh points. It also contains an array of 12,289 pairs of indices, (i,j), specifying connections between
the mesh points.

Load the data file into the workspace.

load airfoil

View Finite Element Mesh

First, scale x and y by 2−32 to bring them into the range 0, 1 . Then form a sparse adjacency matrix
from the (i,j) connections and make it positive definite. Finally, plot the adjacency matrix using (x,y)
as the coordinates for the vertices (mesh points).

% Scaling x and y
x = pow2(x,-32); 
y = pow2(y,-32);

% Forming the sparse adjacency matrix and making it positive definite
n = max(max(i),max(j));
A = sparse(i,j,-1,n,n);
A = A + A';
d = abs(sum(A)) + 1;
A = A + diag(sparse(d));

% Plotting the finite element mesh
gplot(A,[x y])
title('Airfoil Cross-Section')
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Visualize Sparsity Pattern

You can use spy to visualize the nonzero elements in a matrix, so it is a particularly useful function to
see the sparsity pattern in sparse matrices. spy(A) plots the sparsity pattern of the matrix A.

spy(A)
title('Airfoil Adjacency Matrix')
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Symmetric Reordering - Reverse Cuthill-McKee

symrcm uses the Reverse Cuthill-McKee technique for reordering the adjacency matrix. r =
symrcm(A) returns a permutation vector r such that A(r,r) tends to have its diagonal elements
closer to the diagonal than A. This form is a good preordering for LU or Cholesky factorization of
matrices that come from "long, skinny" problems. It works for both symmetric and nonsymmetric
matrices.

r = symrcm(A);
spy(A(r,r))
title('Reverse Cuthill-McKee')
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Symmetric Reordering - Column Permutations

Use j = COLPERM(A) to return a permutation vector that reorders the columns of the sparse matrix
A in nondecreasing order of nonzero count. This form is sometimes useful as a preordering for LU
factorization, as in lu(A(:,j)).

j = colperm(A);
spy(A(j,j))
title('Column Count Reordering')
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Symmetric Reordering - Symmetric Approximate Minimum Degree

symamd gives a symmetric approximate minimum degree permutation. For a symmetric positive
definite matrix A, the command p = symamd(S) returns the permutation vector p such that S(p,p)
tends to have a sparser Cholesky factor than S. Sometimes symamd works well for symmetric
indefinite matrices too.

m = symamd(A);
spy(A(m,m))
title('Approximate Minimum Degree')
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See Also
colperm | spy | symamd | symrcm
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Graphs and Matrices
This example shows an application of sparse matrices and explains the relationship between graphs
and matrices.

A graph is a set of nodes with specified connections, or edges, between them. Graphs come in many
shapes and sizes. One example is the connectivity graph of the Buckminster Fuller geodesic dome,
which is also in the shape of a soccer ball or a carbon-60 molecule.

In MATLAB®, you can use the bucky function to generate the graph of the geodesic dome.

[B,V] = bucky;
G = graph(B);
p = plot(G);
axis equal

You also can specify coordinates for the nodes to change the display of the graph.

p.XData = V(:,1);
p.YData = V(:,2);
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The bucky function can be used to create the graph because it returns an adjacency matrix. An
adjacency matrix is one way to represent the nodes and edges in a graph.

To construct the adjacency matrix of a graph, the nodes are numbered 1 to N. Then each element (i,j)
of the N-by-N matrix is set to 1 if node i is connected to node j, and 0 otherwise. Thus, for undirected
graphs the adjacency matrix is symmetric, but this need not be the case for directed graphs.

For example, here is a simple graph and its associated adjacency matrix.

% Define a matrix A.
A = [0 1 1 0 ; 1 0 0 1 ; 1 0 0 1 ; 0 1 1 0];

% Draw a picture showing the connected nodes.
cla
subplot(1,2,1);
gplot(A,[0 1;1 1;0 0;1 0],'.-');
text([-0.2, 1.2 -0.2, 1.2],[1.2, 1.2, -.2, -.2],('1234')', ...
   'HorizontalAlignment','center')
axis([-1 2 -1 2],'off')

% Draw a picture showing the adjacency matrix.
subplot(1,2,2);
xtemp = repmat(1:4,1,4);
ytemp = reshape(repmat(1:4,4,1),16,1)';
text(xtemp-.5,ytemp-.5,char('0'+A(:)),'HorizontalAlignment','center');
line([.25 0 0 .25 NaN 3.75 4 4 3.75],[0 0 4 4 NaN 0 0 4 4])
axis off tight
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Sparse matrices are particularly helpful for representing very large graphs. This is because each
node is usually connected to only a few other nodes. As a result, the density of nonzero entries in the
adjacency matrix is often relatively small for large graphs. The bucky ball adjacency matrix is a good
example, since it is a 60-by-60 symmetric sparse matrix with only 180 nonzero elements. The density
of this matrix is just 5%.

Since the adjacency matrix defines the graph, you can plot a portion of the bucky ball by using a
subset of the entries in the adjacency matrix.

Use the adjacency function to create a new adjacency matrix for the graph. Display the nodes in
one hemisphere of the bucky ball by indexing into the adjacency matrix to create a new, smaller
graph.

figure
A = adjacency(G);
H = graph(A(1:30,1:30));
h = plot(H);
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To visualize the adjacency matrix of this hemisphere, use the spy function to plot the silhouette of the
nonzero elements in the adjacency matrix.

Note that the matrix is symmetric, since if node i is connected to node j, then node j is connected to
node i.

spy(A(1:30,1:30))
title('Top Left Corner of Bucky Ball Adjacency Matrix')
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Finally, here is a spy plot of the entire bucky ball adjacency matrix.

spy(A)
title('Bucky Ball Adjacency Matrix')
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See Also
graph | spy
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Sparse Matrix Reordering
This example shows how reordering the rows and columns of a sparse matrix can influence the speed
and storage requirements of a matrix operation.

Visualizing a Sparse Matrix

A spy plot shows the nonzero elements in a matrix.

This spy plot shows a sparse symmetric positive definite matrix derived from a portion of the barbell
matrix. This matrix describes connections in a graph that resembles a barbell.

load barbellgraph.mat
S = A + speye(size(A));
pct = 100 / numel(A);
spy(S)
title('A Sparse Symmetric Matrix')
nz = nnz(S);
xlabel(sprintf('Nonzeros = %d (%.3f%%)',nz,nz*pct));

Here is a plot of the barbell graph.

G = graph(S,'omitselfloops');
p = plot(G,'XData',xy(:,1),'YData',xy(:,2),'Marker','.');
axis equal
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Computing the Cholesky Factor

Compute the Cholesky factor L, where S = L*L'. Notice that L contains many more nonzero
elements than the unfactored S, because the computation of the Cholesky factorization creates fill-in
nonzeros. These fill-in values slow down the algorithm and increase storage cost.

L = chol(S,'lower');
spy(L)
title('Cholesky Decomposition of S')
nc(1) = nnz(L);
xlabel(sprintf('Nonzeros = %d (%.2f%%)',nc(1),nc(1)*pct));
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Reordering to Speed Up Calculation

By reordering the rows and columns of a matrix, it is possible to reduce the amount of fill-in that
factorization creates, thereby reducing the time and storage cost of subsequent calculations.

Several different reorderings supported by MATLAB® are:

• colperm: Column count
• symrcm: Reverse Cuthill-McKee
• amd: Minimum degree
• dissect: Nested dissection

Test the effects of these sparse matrix reorderings on the barbell matrix.

Column Count Reordering

The colperm command uses the column count reordering algorithm to move rows and columns with
higher nonzero count towards the end of the matrix.

q = colperm(S);
spy(S(q,q))
title('S(q,q) After Column Count Ordering')
nz = nnz(S);
xlabel(sprintf('Nonzeros = %d (%.3f%%)',nz,nz*pct));
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For this matrix, the column count ordering can barely reduce the time and storage for Cholesky
factorization.

L = chol(S(q,q),'lower');
spy(L)
title('chol(S(q,q)) After Column Count Ordering')
nc(2) = nnz(L);
xlabel(sprintf('Nonzeros = %d (%.2f%%)',nc(2),nc(2)*pct));
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Reverse Cuthill-McKee Reordering

The symrcm command uses the reverse Cuthill-McKee reordering algorithm to move all nonzero
elements closer to the diagonal, reducing the bandwidth of the original matrix.

d = symrcm(S);
spy(S(d,d))
title('S(d,d) After Cuthill-McKee Ordering')
nz = nnz(S);
xlabel(sprintf('Nonzeros = %d (%.3f%%)',nz,nz*pct));
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The fill-in produced by Cholesky factorization is confined to the band, so factorizing the reordered
matrix takes less time and less storage.

L = chol(S(d,d),'lower');
spy(L)
title('chol(S(d,d)) After Cuthill-McKee Ordering')
nc(3) = nnz(L);
xlabel(sprintf('Nonzeros = %d (%.2f%%)', nc(3),nc(3)*pct));
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Minimum Degree Reordering

The amd command uses an approximate minimum degree algorithm (a powerful graph-theoretic
technique) to produce large blocks of zeros in the matrix.

r = amd(S);
spy(S(r,r))
title('S(r,r) After Minimum Degree Ordering')
nz = nnz(S);
xlabel(sprintf('Nonzeros = %d (%.3f%%)',nz,nz*pct));
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The Cholesky factorization preserves the blocks of zeros produced by the minimum degree algorithm.
This structure can significantly reduce time and storage costs.

L = chol(S(r,r),'lower');
spy(L)
title('chol(S(r,r)) After Minimum Degree Ordering')
nc(4) = nnz(L);
xlabel(sprintf('Nonzeros = %d (%.2f%%)',nc(4),nc(4)*pct));
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Nested Dissection Permutation

The dissect function uses graph-theoretic techniques to produce fill-reducing orderings. The
algorithm treats the matrix as the adjacency matrix of a graph, coarsens the graph by collapsing
vertices and edges, reorders the smaller graph, and then uses refinement steps to uncoarsen the
small graph and produce a reordering of the original graph. The result is a powerful algorithm that
frequently produces the least amount of fill-in compared to the other reordering algorithms.

p = dissect(S);
spy(S(p,p))
title('S(p,p) After Nested Dissection Ordering')
nz = nnz(S);
xlabel(sprintf('Nonzeros = %d (%.3f%%)',nz,nz*pct));
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Similar to the minimum degree ordering, the Cholesky factorization of the nested dissection ordering
mostly preserves the nonzero structure of S(d,d) below the main diagonal.

L = chol(S(p,p),'lower');
spy(L)
title('chol(S(p,p)) After Nested Dissection Ordering')
nc(5) = nnz(L);
xlabel(sprintf('Nonzeros = %d (%.2f%%)',nc(5),nc(5)*pct));
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Summarizing Results

This bar chart summarizes the effects of reordering the matrix before performing the Cholesky
factorization. While the Cholesky factorization of the original matrix had about 8% of its elements as
nonzeros, using dissect or symamd reduces that density to less than 1%.

labels = {'Original','Column Count','Cuthill-McKee',...
    'Min Degree','Nested Dissection'};
bar(nc*pct)
title('Nonzeros After Cholesky Factorization')
ylabel('Percent');
ax = gca;
ax.XTickLabel = labels;
ax.XTickLabelRotation = -45;
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See Also
chol | colperm | nnz | spy | symamd | symrcm
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Iterative Methods for Linear Systems
One of the most important and common applications of numerical linear algebra is the solution of
linear systems that can be expressed in the form A*x = b. When A is a large sparse matrix, you can
solve the linear system using iterative methods, which enable you to trade-off between the run time of
the calculation and the precision of the solution. This topic describes the iterative methods available
in MATLAB to solve the equation A*x = b.

Direct vs. Iterative Methods
There are two types of methods for solving linear equations A*x = b:

• Direct methods are variants of Gaussian elimination. These methods use the individual matrix
elements directly, through matrix operations such as LU, QR, or Cholesky factorization. You can
use direct methods to solve linear equations with a high level of precision, but these methods can
be slow when operating on large sparse matrices. The speed of solving a linear system with a
direct method strongly depends on the density and fill pattern of the coefficient matrix.

For example, this code solves a small linear system.

A = magic(5);
b = sum(A,2);
x = A\b;
norm(A*x-b)

ans =

   1.4211e-14

MATLAB implements direct methods through the matrix division operators / and \, as well as
functions such as decomposition, lsqminnorm, and linsolve.

• Iterative methods produce an approximate solution to the linear system after a finite number of
steps. These methods are useful for large systems of equations where it is reasonable to trade-off
precision for a shorter run time. Iterative methods use the coefficient matrix only indirectly,
through a matrix-vector product or an abstract linear operator. Iterative methods can be used with
any matrix, but they are typically applied to large sparse matrices for which direct solves are slow.
The speed of solving a linear system with an indirect method does not depend as strongly on the
fill pattern of the coefficient matrix as a direct method. However, using an iterative method
typically requires tuning parameters for each specific problem.

For example, this code solves a large sparse linear system that has a symmetric positive definite
coefficient matrix.

A = delsq(numgrid('L',400));
b = ones(size(A,1),1);
x = pcg(A,b,[],1000);
norm(b-A*x)

pcg converged at iteration 796 to a solution with relative residual 9.9e-07.

ans =

   3.4285e-04

MATLAB implements a variety of iterative methods that have different strengths and weaknesses
depending on the properties of the coefficient matrix A.
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Direct methods are usually faster and more generally applicable than indirect methods if there is
enough storage available to carry them out. Generally, you should attempt to use x = A\b first. If the
direct solve is too slow, then you can try using iterative methods.

Generic Iterative Algorithm
Most iterative algorithms that solve linear equations follow a similar process:

1 Start with an initial guess for the solution vector x0. (This is usually a vector of zeros unless you
specify a better guess.)

2 Compute the residual norm res = norm(b-A*x0).
3 Compare the residual against the specified tolerance. If res <= tol, end the computation and

return the computed answer for x0.
4 Apply A*x0 and update the magnitude and direction of the vector x0 based on the value of the

residual and other calculated quantities. This is the step where most computation is done.
5 Repeat Steps 2 through 4 until the value of x0 is good enough to satisfy the tolerance.

Iterative methods differ in how they update the magnitude and direction of x0 in Step 4, and some
have slightly different convergence criteria in Steps 2 and 3, but this captures the basic process that
all iterative solvers follow.

Summary of Iterative Methods
MATLAB has several functions that implement iterative methods for systems of linear equations.
These methods are designed to solve Ax = b or minimize the norm ||b – Ax||. Several of these methods
have similarities and are based on the same underlying algorithms, but each algorithm has benefits in
certain situations [1], [2].

Description Notes
pcg (preconditioned conjugate gradients) • Coefficient matrix must be symmetric

positive definite.
• Most effective solver for symmetric

positive definite systems since storage
for only a limited number of vectors is
required.

lsqr (least squares) • The only solver available for
rectangular systems.

• Analytically equivalent to the method
of conjugate gradients (PCG) applied
to the normal equations (A'*A)*x =
A'*b.
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Description Notes
minres (minimum residual) • Coefficient matrix must be symmetric

but does not need to be positive
definite.

• Each iteration minimizes the residual
error in the 2-norm, so the algorithm
is guaranteed to make progress from
step to step.

• Does not suffer from breakdowns
(when an algorithm becomes unable
to make progress toward a solution
and halts).

symmlq (symmetric LQ) • Coefficient matrix must be symmetric
but does not need to be positive
definite.

• Solves a projected system and keeps
the residual orthogonal to all previous
ones.

• Does not suffer from breakdowns
(when an algorithm becomes unable
to make progress toward a solution
and halts).

bicg (biconjugate gradient) • Coefficient matrix must be square.
• bicg is computationally cheap, but

convergence is irregular and
unreliable.

• bicg is historically important because
many other iterative algorithms were
developed as improvements on it.

bicgstab (biconjugate gradient stabilized) • Coefficient matrix must be square.
• Uses BiCG steps alternating with

GMRES(1) steps for additional
stability.

bicgstabl (biconjugate gradient stabilized (l)) • Coefficient matrix must be square.
• Uses BiCG steps alternating with

GMRES(2) steps for additional
stability.

cgs (conjugate gradient squared) • Coefficient matrix must be square.
• Requires the same number of

operations per iteration as bicg, but
avoids using the transpose by working
with a squared residual.

4 Sparse Matrices

4-58



Description Notes
gmres (generalized minimum residual) • Coefficient matrix must be square.

• One of the most dependable
algorithms, since the residual norm is
minimized in each iteration.

• Work and required storage rise
linearly with iteration count.

• Choosing an appropriate restart
value is essential to avoid
unnecessary work and storage.

qmr (quasi-minimal residual) • Coefficient matrix must be square.
• Overhead per iteration is slightly

more than bicg, but this provides
more stability.

tfqmr (transpose-free quasi-minimal residual) • Coefficient matrix must be square.
• Best solver to try for symmetric
indefinite systems when memory is
limited.

Choosing an Iterative Solver
This flowchart of iterative solvers in MATLAB gives a rough idea of the situations where each solver is
useful. You can generally use gmres for almost all square, nonsymmetric problems. There are some
cases where the biconjugate gradients algorithms (bicg, bicgstab, cgs, and so on) are more
efficient than gmres, but their unpredictable convergence behavior often makes gmres a better
initial choice.
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Preconditioners
The convergence rate of iterative methods is dependent on the spectrum (eigenvalues) of the
coefficient matrix. Therefore, you can improve the convergence and stability of most iterative
methods by transforming the linear system to have a more favorable spectrum (clustered eigenvalues
or a condition number near 1). This transformation is performed by applying a second matrix, called a
preconditioner, to the system. This process transforms the linear system

Ax = b

into an equivalent system

A x = b .

The ideal preconditioner transforms the coefficient matrix A into an identity matrix, since any
iterative method will converge in one iteration with such a preconditioner. In practice, finding a good

4 Sparse Matrices

4-60



preconditioner requires trade-offs. The transformation is performed in one of three ways: left
preconditioning, right preconditioning, or split preconditioning.

The first case is called left preconditioning since the preconditioner matrix M appears on the left of A:

M−1A x = M−1 b .

These iterative solvers use left preconditioning:

• bicg
• gmres
• qmr

In right preconditioning, M appears on the right of A:

A M−1 M x = b .

These iterative solvers use right preconditioning:

• lsqr
• bicgstab
• bicgstabl
• cgs
• tfqmr

Finally, for symmetric coefficient matrices A, split preconditioning ensures that the transformed
system is still symmetric. The preconditioner M = HHT gets split and the factors appear on different
sides of A:

H−1A H−T HTx = H−1b

The solver algorithm for split preconditioned systems is based on the above equation, but in practice
there is no need to compute H. The solver algorithm multiplies and solves with M directly.

These iterative solvers use split preconditioning:

• pcg
• minres
• symmlq

In all cases, the preconditioner M is chosen to accelerate convergence of the iterative method. When
the residual error of an iterative solution stagnates or makes little progress between iterations, it
often means you need to generate a preconditioner matrix to incorporate into the problem.

The iterative solvers in MATLAB allow you to specify a single preconditioner matrix M, or two
preconditioner matrix factors such that M = M1M2. This makes it easy to specify a preconditioner in
its factorized form, such as M = LU. Note that in the split preconditioned case, where M = HHT also
holds, there is not a relation between the M1 and M2 inputs and the H factors.

In some cases, preconditioners occur naturally in the mathematical model of a given problem. In the
absence of natural preconditioners, you can use one of the incomplete factorizations in this table to
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generate a preconditioner matrix. Incomplete factorizations are essentially incomplete direct solves
that are quick to calculate.

Function Factorization Description
ilu A≈LU Incomplete LU factorization for

square or rectangular matrices.
ichol A ≈ L L* Incomplete Cholesky

factorization for symmetric
positive definite matrices.

See “Incomplete Factorizations” on page 4-22 for more information about ilu and ichol.

Preconditioner Example

Consider the five-point finite difference approximation to Laplace's equation on a square, two-
dimensional domain. The following commands use the preconditioned conjugate gradient (PCG)
method with the preconditioner M = L*L', where L is the zero-fill incomplete Cholesky factor of A.
For this system, pcg is unable to find a solution without specifying a preconditioner matrix.

A = delsq(numgrid('S',250));
b = ones(size(A,1),1);
tol = 1e-3;
maxit = 100;
L = ichol(A);
x = pcg(A,b,tol,maxit,L,L');

pcg converged at iteration 92 to a solution with relative residual 0.00076.

pcg requires 92 iterations to achieve the specified tolerance. However, using a different
preconditioner can yield better results. For example, using ichol to construct a modified incomplete
Cholesky allows pcg to meet the specified tolerance after only 39 iterations.

L = ichol(A,struct('type','nofill','michol','on'));
x = pcg(A,b,tol,maxit,L,L');

pcg converged at iteration 39 to a solution with relative residual 0.00098.

Equilibration and Reordering
For computationally tough problems, you might need a better preconditioner than the one generated
by ilu or ichol directly. For example, you might want to generate a better quality preconditioner or
minimize the amount of computation being done. In these cases, you can use equilibration to make
the coefficient matrix more diagonally dominant (which can lead to a better quality preconditioner)
and reordering to minimize the number of nonzeros in matrix factors (which can reduce memory
requirements and may improve the efficiency of subsequent calculations).

If you use both equilibration and reordering to generate a preconditioner, the process is:

1 Use equilibrate on the coefficient matrix.
2 Reorder the equilibrated matrix using a sparse matrix reordering function, such as dissect or

symrcm.
3 Generate the final preconditioner using ilu or ichol.
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Here is an example that uses equilibration and reordering to generate a preconditioner for a sparse
coefficient matrix.

1 Create the coefficient matrix A and a vector of ones b for the right-hand side of the linear
equation. Calculate an estimation of the condition number for A.

load west0479;
A = west0479;
b = ones(size(A,1),1);
condest(A)

ans =

   1.4244e+12

Use equilibrate to improve the condition number of the coefficient matrix.

[P,R,C] = equilibrate(A);
Anew = R*P*A*C;
bnew = R*P*b;
condest(Anew)

ans =

   5.1042e+04
2 Reorder the equilibrated matrix using dissect.

q = dissect(Anew);
Anew = Anew(q,q);
bnew = bnew(q);

3 Generate a preconditioner using an incomplete LU factorization.

[L,U] = ilu(Anew);
4 Solve the linear system with gmres using the preconditioner matrices, a tolerance of 1e-10, 50

maximum outer iterations, and 30 inner iterations.

tol = 1e-10;
maxit = 50;
restart = 30;
[xnew, flag, relres] = gmres(Anew,bnew,restart,tol,maxit,L,U);
x(q) = xnew;
x = C*x(:);

Now, compare the relres relative residual returned by gmres (which includes the
preconditioners) to the relative residual without the preconditioners resnew and the relative
residual without equilibration res. The results show that even though the linear systems are all
equivalent, the different methods apply different weights to each element, and this can
significantly affect the value of the residual.

relres
resnew = norm(Anew*xnew - bnew) / norm(bnew)
res = norm(A*x - b) / norm(b)

relres =
   8.7537e-11
resnew =
   3.6805e-08
res =
   5.1415e-04
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Using Linear Operators Instead of Matrices
The iterative solvers in MATLAB do not require that you provide a numeric matrix for A. Since the
calculations performed by the solvers use the result of the matrix-vector multiplication A*x or A'*x,
you can instead provide a function that calculates the result of those linear operations. A function
that calculates these quantities is often called a linear operator.

In addition to using a linear operator instead of a coefficient matrix A, you can also use a linear
operator instead of a matrix for the preconditioner M. In that case, the function needs to calculate M\x
or M'\x, as indicated on the reference page for the solver.

Using linear operators enables you to exploit patterns in A or M to calculate the value of the linear
operations more efficiently than if the solver used the matrix explicitly to carry out the full matrix-
vector multiplication. It also means you do not need the memory to store the coefficient or
preconditioner matrices, since the linear operator typically calculates the result of the matrix-vector
multiplication without forming the matrix at all.

For example, consider the coefficient matrix

A = [2 -1  0  0  0  0;
    -1  2 -1  0  0  0;
     0 -1  2 -1  0  0;
     0  0 -1  2 -1  0;
     0  0  0 -1  2 -1;
     0  0  0  0 -1  2];

When A multiplies a vector, most of the elements in the resulting vector are zeros. The nonzero
elements in the result correspond with the nonzero tridiagonal elements of A. So, for a given vector x,
the linear operator function simply needs to add together three vectors to calculate the value of A*x:

function y = linearOperatorA(x)
y = -1*[0; x(1:end-1)] ...
  + 2*x ...
  + -1*[x(2:end); 0];
end

Most iterative solvers require the linear operator function for A to return the value of A*x. Likewise,
for the preconditioner matrix M, the function generally must calculate M\x. For the solvers lsqr, qmr,
and bicg, the linear operator functions must also return the value for A'*x or M'\x when requested.
See the iterative solver reference pages for examples and descriptions of linear operator functions.
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Directed and Undirected Graphs
In this section...
“What Is a Graph?” on page 5-2
“Creating Graphs” on page 5-5
“Graph Node IDs” on page 5-8
“Modify or Query Existing Graph” on page 5-8

What Is a Graph?
A graph is a collection of nodes and edges that represents relationships:

• Nodes are vertices that correspond to objects.
• Edges are the connections between objects.
• The graph edges sometimes have Weights, which indicate the strength (or some other attribute)

of each connection between the nodes.

These definitions are general, as the exact meaning of the nodes and edges in a graph depends on the
specific application. For instance, you can model the friendships in a social network using a graph.
The graph nodes are people, and the edges represent friendships. The natural correspondence of
graphs to physical objects and situations means that you can use graphs to model a wide variety of
systems. For example:

• Web page linking — The graph nodes are web pages, and the edges represent hyperlinks between
pages.

• Airports — The graph nodes are airports, and the edges represent flights between airports.

In MATLAB, the graph and digraph functions construct objects that represent undirected and
directed graphs.

• Undirected graphs have edges that do not have a direction. The edges indicate a two-way
relationship, in that each edge can be traversed in both directions. This figure shows a simple
undirected graph with three nodes and three edges.
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• Directed graphs have edges with direction. The edges indicate a one-way relationship, in that
each edge can only be traversed in a single direction. This figure shows a simple directed graph
with three nodes and two edges.
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The exact position, length, or orientation of the edges in a graph illustration typically do not have
meaning. In other words, the same graph can be visualized in several different ways by rearranging
the nodes and/or distorting the edges, as long as the underlying structure does not change.

Self-loops and Multigraphs

Graphs created using graph and digraph can have one or more self-loops, which are edges
connecting a node to itself. Additionally, graphs can have multiple edges with the same source and
target nodes, and the graph is then known as a multigraph. A multigraph may or may not contain self-
loops.

For the purposes of graph algorithm functions in MATLAB, a graph containing a node with a single
self-loop is not a multigraph. However, if the graph contains a node with multiple self-loops, it is a
multigraph.

For example, the following figure shows an undirected multigraph with self-loops. Node A has three
self-loops, while node C has one. The graph contains these three conditions, any one of which makes
it a multigraph.

• Node A has three self-loops.
• Nodes A and B have five edges between them.
• Nodes A and C have two edges between them.
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To determine whether a given graph is a multigraph, use the ismultigraph function.

Creating Graphs
The primary ways to create a graph include using an adjacency matrix or an edge list.

Adjacency Matrix

One way to represent the information in a graph is with a square adjacency matrix. The nonzero
entries in an adjacency matrix indicate an edge between two nodes, and the value of the entry
indicates the weight of the edge. The diagonal elements of an adjacency matrix are typically zero, but
a nonzero diagonal element indicates a self-loop, or a node that is connected to itself by an edge.

• When you use graph to create an undirected graph, the adjacency matrix must be symmetric. In
practice, the matrices are frequently triangular to avoid repetition. To construct an undirected
graph using only the upper or lower triangle of the adjacency matrix, use graph(A,'upper') or
graph(A,'lower') .

• When you use digraph to create a directed graph, the adjacency matrix does not need to be
symmetric.

• For large graphs, the adjacency matrix contains many zeros and is typically a sparse matrix.
• You cannot create a multigraph from an adjacency matrix.

For example, consider this undirected graph.

 Directed and Undirected Graphs

5-5



You can represent the graph with this adjacency matrix:

0 1 2
1 0 3
2 3 0

.

To construct the graph in MATLAB, input:

A = [0 1 2; 1 0 3; 2 3 0];
node_names = {'A','B','C'};
G = graph(A,node_names)

G = 

  graph with properties:

    Edges: [3×2 table]
    Nodes: [3×1 table]

You can use the graph or digraph functions to create a graph using an adjacency matrix, or you can
use the adjacency function to find the weighted or unweighted sparse adjacency matrix of a
preexisting graph.

Edge List

Another way to represent the information in a graph is by listing all of the edges.
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For example, consider the same undirected graph.

Now represent the graph by the edge list

Edge     Weight
(A, B)
(A, C)

1
2

(B, C) 3

From the edge list it is easy to conclude that the graph has three unique nodes, A, B, and C, which are
connected by the three listed edges. If the graph had disconnected nodes, they would not be found in
the edge list, and would have to be specified separately.

In MATLAB, the list of edges is separated by column into source nodes and target nodes. For directed
graphs the edge direction (from source to target) is important, but for undirected graphs the source
and target node are interchangeable. One way to construct this graph using the edge list is to use
separate inputs for the source nodes, target nodes, and edge weights:

source_nodes = {'A','A','B'};
target_nodes = {'B','C','C'};
edge_weights = [1 2 3];
G = graph(source_nodes, target_nodes, edge_weights);

Both graph and digraph permit construction of a simple graph or multigraph from an edge list.
After constructing a graph, G, you can look at the edges (and their properties) with the command
G.Edges. The order of the edges in G.Edges is sorted by source node (first column) and secondarily
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by target node (second column). For undirected graphs, the node with the smaller index is listed as
the source node, and the node with the larger index is listed as the target node.

Since the underlying implementation of graph and digraph depends on sparse matrices, many of
the same indexing costs apply. Using one of the previous methods to construct a graph all at once
from the triplet pairs (source,target,weight) is quicker than creating an empty graph and
iteratively adding more nodes and edges. For best performance, minimize the number of calls to
graph, digraph, addedge, addnode, rmedge, and rmnode.

Graph Node IDs
By default, all of the nodes in a graph created using graph or digraph are numbered. Therefore, you
always can refer to them by their numeric node index.

If the graph has node names (that is, G.Nodes contains a variable Name), then you also can refer to
the nodes in a graph using their names. Thus, named nodes in a graph can be referred to by either
their node indices or node names. For example, node 1 can be called, 'A'.

The term node ID encompasses both aspects of node identification. The node ID refers to both the
node index and the node name.

For convenience, MATLAB remembers which type of node ID you use when you call most graph
functions. So if you refer to the nodes in a graph by their node indices, most graph functions return a
numeric answer that also refers to the nodes by their indices.

A = [0 1 1 0; 1 0 1 0; 1 1 0 1; 0 0 1 0];
G = graph(A,{'a','b','c','d'});
p = shortestpath(G,1,4)

p =

     1     3     4

However, if you refer to the nodes by their names, then most graph functions return an answer that
also refers to the nodes by their names (contained in a cell array of character vectors or string array).

p1 = shortestpath(G,'a','d')

p1 =

  1×3 cell array

    {'a'}    {'c'}    {'d'}

Use findnode to find the numeric node ID for a given node name. Conversely, for a given numeric
node ID, index into G.Nodes.Name to determine the corresponding node name.

Modify or Query Existing Graph
After you construct a graph or digraph object, you can use a variety of functions to modify the
graph structure or to determine how many nodes or edges the graph has. This table lists some
available functions for modifying or querying graph and digraph objects.

addedge Add one or more edges to a graph

5 Graph and Network Algorithms

5-8



rmedge Remove one or more edges from a graph
addnode Add one or more nodes to a graph
rmnode Remove one or more nodes from a graph
findnode Locate a specific node in a graph
findedge Locate a specific edge in a graph
numnodes Find the number of nodes in a graph
numedges Find the number of edges in a graph
edgecount Number of edges between specified nodes
flipedge Reverse the direction of directed graph edges
reordernodes Permute the order of the nodes in a graph
subgraph Extract subgraph

See “Modify Nodes and Edges of Existing Graph” on page 5-10 for some common graph modification
examples.

See Also
digraph | graph

More About
• “Modify Nodes and Edges of Existing Graph” on page 5-10
• “Add Graph Node Names, Edge Weights, and Other Attributes” on page 5-13
• “Graph Plotting and Customization” on page 5-17
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Modify Nodes and Edges of Existing Graph
This example shows how to access and modify the nodes and/or edges in a graph or digraph object
using the addedge, rmedge, addnode, rmnode, findedge, findnode, and subgraph functions.

Add Nodes

Create a graph with four nodes and four edges. The corresponding elements in s and t specify the
end nodes of each graph edge.

s = [1 1 1 2];
t = [2 3 4 3];
G = graph(s,t)

G = 
  graph with properties:

    Edges: [4x1 table]
    Nodes: [4x0 table]

View the edge list of the graph.

G.Edges

ans=4×1 table
    EndNodes
    ________

     1    2 
     1    3 
     1    4 
     2    3 

Use addnode to add five nodes to the graph. This command adds five disconnected nodes with node
IDs 5, 6, 7, 8, and 9.

G = addnode(G,5)

G = 
  graph with properties:

    Edges: [4x1 table]
    Nodes: [9x0 table]

Remove Nodes

Use rmnode to remove nodes 3, 5, and 6 from the graph. All edges connected to one of the removed
nodes also are removed. The remaining six nodes in the graph are renumbered to reflect the new
number of nodes.

G = rmnode(G,[3 5 6])

G = 
  graph with properties:
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    Edges: [2x1 table]
    Nodes: [6x0 table]

Add Edges

Use addedge to add two edges to G. The first edge is between node 1 and node 5, and the second
edge is between node 2 and node 5. This command adds two new rows to G.Edges.

G = addedge(G,[1 2],[5 5])

G = 
  graph with properties:

    Edges: [4x1 table]
    Nodes: [6x0 table]

Remove Edges

Use rmedge to remove the edge between node 1 and node 3. This command removes a row from
G.Edges.

G = rmedge(G,1,3)

G = 
  graph with properties:

    Edges: [3x1 table]
    Nodes: [6x0 table]

Determine Edge Index

Determine the edge index for the edge between nodes 1 and 5. The edge index, ei, is a row number
in G.Edges.

ei = findedge(G,1,5)

ei = 2

Determine Node Index

Add node names to the graph, and then determine the node index for node 'd'. The numeric node
index, ni, is a row number in G.Nodes. You can use both ni and the node name, 'd', to refer to the
node when using other graph functions, like shortestpath.

G.Nodes.Name = {'a' 'b' 'c' 'd' 'e' 'f'}';
ni = findnode(G,'d')

ni = 4

Extract Subgraph

Use subgraph to extract a piece of the graph containing only two nodes.

H = subgraph(G,[1 2])

H = 
  graph with properties:
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    Edges: [1x1 table]
    Nodes: [2x1 table]

View the edge list of the subgraph.

H.Edges

ans=table
       EndNodes   
    ______________

    {'a'}    {'b'}

Modify Node and Edge Tables with Variables Editor

The node and edge information for a graph object is contained in two properties: Nodes and Edges.
Both of these properties are tables containing variables to describe the attributes of the nodes and
edges in the graph. Since Nodes and Edges are both tables, you can use the Variables editor to
interactively view or edit the tables. You cannot add or remove nodes or edges using the Variables
editor, and you also cannot edit the EndNodes property of the Edges table. The Variables editor is
useful for managing extra node and edge attributes in the Nodes and Edges tables. For more
information, see “Create and Edit Variables”.

See Also
addedge | addnode | digraph | findedge | findnode | graph | rmedge | rmnode | subgraph

More About
• “Directed and Undirected Graphs” on page 5-2
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Add Graph Node Names, Edge Weights, and Other Attributes
This example shows how to add attributes to the nodes and edges in graphs created using graph and
digraph. You can specify node names or edge weights when you originally call graph or digraph to
create a graph. However, this example shows how to add attributes to a graph after it has been
created.

Create Graph

Create a directed graph. The corresponding elements in s and t define the source and target nodes
of each edge in the graph.

s = [1 1 2 2 3];
t = [2 4 3 4 4];
G = digraph(s,t)

G = 
  digraph with properties:

    Edges: [5x1 table]
    Nodes: [4x0 table]

Add Node Names

Add node names to the graph by adding the variable, Name, to the G.Nodes table. The Name variable
must be specified as an N-by-1 cell array of character vectors or string array, where N =
numnodes(G). It is important to use the Name variable when adding node names, as this variable
name is treated specially by some graph functions.

G.Nodes.Name = {'First' 'Second' 'Third' 'Fourth'}';

View the new Nodes table.

G.Nodes

ans=4×1 table
       Name   
    __________

    {'First' }
    {'Second'}
    {'Third' }
    {'Fourth'}

Use table indexing to view the names of nodes 1 and 4.

G.Nodes.Name([1 4])

ans = 2x1 cell
    {'First' }
    {'Fourth'}

Add Edge Weights

Add edge weights to the graph by adding the variable, Weight, to the G.Edges table. The Weight
variable must be an M-by-1 numeric vector, where M = numedges(G). It is important to use the

 Add Graph Node Names, Edge Weights, and Other Attributes

5-13



Weight variable when adding edge weights, as this variable name is treated specially by some graph
functions.

G.Edges.Weight = [10 20 30 40 50]';

View the new Edges table.

G.Edges

ans=5×2 table
            EndNodes            Weight
    ________________________    ______

    {'First' }    {'Second'}      10  
    {'First' }    {'Fourth'}      20  
    {'Second'}    {'Third' }      30  
    {'Second'}    {'Fourth'}      40  
    {'Third' }    {'Fourth'}      50  

Use table indexing to view the first and third rows of G.Edges.

G.Edges([1 3],:)

ans=2×2 table
            EndNodes            Weight
    ________________________    ______

    {'First' }    {'Second'}      10  
    {'Second'}    {'Third' }      30  

Add Custom Attributes

In principle you can add any variable to G.Nodes and G.Edges that defines an attribute of the graph
nodes or edges. Adding custom attributes can be useful, since functions like subgraph and
reordernodes preserve the graph attributes.

For example, add a variable named Power to G.Edges to indicate whether each edge is 'on' or
'off'.

G.Edges.Power = {'on' 'on' 'on' 'off' 'off'}';
G.Edges

ans=5×3 table
            EndNodes            Weight     Power 
    ________________________    ______    _______

    {'First' }    {'Second'}      10      {'on' }
    {'First' }    {'Fourth'}      20      {'on' }
    {'Second'}    {'Third' }      30      {'on' }
    {'Second'}    {'Fourth'}      40      {'off'}
    {'Third' }    {'Fourth'}      50      {'off'}

Add a variable named Size to G.Nodes to indicate the physical size of each node.

G.Nodes.Size = [10 20 10 30]';
G.Nodes
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ans=4×2 table
       Name       Size
    __________    ____

    {'First' }     10 
    {'Second'}     20 
    {'Third' }     10 
    {'Fourth'}     30 

Modify Tables with Variables Editor

Since Nodes and Edges are both tables, you can use the Variables editor to interactively view or edit
the tables. For more information, see “Create and Edit Variables”.

Label Nodes and Edges of Graph Plot

When you plot a graph, you can use the variables in G.Nodes and G.Edges to label the graph nodes
and edges. This practice is convenient, since these variables are already guaranteed to have the
correct number of elements.

Plot the graph and label the edges using the Power variable in G.Edges. Label the nodes using the
Size variable in G.Nodes.

p = plot(G,'EdgeLabel',G.Edges.Power,'NodeLabel',G.Nodes.Size)

p = 
  GraphPlot with properties:
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     NodeColor: [0 0.4470 0.7410]
    MarkerSize: 4
        Marker: 'o'
     EdgeColor: [0 0.4470 0.7410]
     LineWidth: 0.5000
     LineStyle: '-'
     NodeLabel: {'10'  '20'  '10'  '30'}
     EdgeLabel: {'on'  'on'  'on'  'off'  'off'}
         XData: [2 1.5000 1 2]
         YData: [4 3 2 1]
         ZData: [0 0 0 0]

  Show all properties

See Also
digraph | graph

More About
• “Directed and Undirected Graphs” on page 5-2
• “Modify Nodes and Edges of Existing Graph” on page 5-10
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Graph Plotting and Customization
This example shows how to plot graphs, and then customize the display to add labels or highlighting
to the graph nodes and edges.

Graph Plotting Objects

Use the plot function to plot graph and digraph objects. By default, plot examines the size and
type of graph to determine which layout to use. The resulting figure window contains no axes tick
marks. However, if you specify the (x,y) coordinates of the nodes with the XData, YData, or ZData
name-value pairs, then the figure includes axes ticks.

Node labels are included automatically in plots of graphs that have 100 or fewer nodes. The node
labels use the node names if available; otherwise, the labels are numeric node indices.

For example, create a graph using the buckyball adjacency matrix, and then plot the graph using all
of the default options. If you call plot and specify an output argument, then the function returns a
handle to a GraphPlot object. Subsequently, you can use this object to adjust properties of the plot.
For example, you can change the color or style of the edges, the size and color of the nodes, and so
on.

G = graph(bucky);
p = plot(G)

p = 
  GraphPlot with properties:
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     NodeColor: [0 0.4470 0.7410]
    MarkerSize: 4
        Marker: 'o'
     EdgeColor: [0 0.4470 0.7410]
     LineWidth: 0.5000
     LineStyle: '-'
     NodeLabel: {1x60 cell}
     EdgeLabel: {}
         XData: [1x60 double]
         YData: [1x60 double]
         ZData: [1x60 double]

  Show all properties

After you have a handle to the GraphPlot object, use dot indexing to access or change the property
values. For a complete list of the properties that you can adjust, see GraphPlot Properties.

Change the value of NodeColor to 'red'.

p.NodeColor = 'red';

Determine the line width of the edges.

p.LineWidth

ans = 0.5000
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Create and Plot Graph

Create and plot a graph representing an L-shaped membrane constructed from a square grid with a
side of 12 nodes. Specify an output argument with plot to return a handle to the GraphPlot object.

n = 12;
A = delsq(numgrid('L',n));
G = graph(A,'omitselfloops')

G = 
  graph with properties:

    Edges: [130x2 table]
    Nodes: [75x0 table]

p = plot(G)

p = 
  GraphPlot with properties:

     NodeColor: [0 0.4470 0.7410]
    MarkerSize: 4
        Marker: 'o'
     EdgeColor: [0 0.4470 0.7410]
     LineWidth: 0.5000
     LineStyle: '-'
     NodeLabel: {1x75 cell}

 Graph Plotting and Customization

5-19



     EdgeLabel: {}
         XData: [1x75 double]
         YData: [1x75 double]
         ZData: [1x75 double]

  Show all properties

Change Graph Node Layout

Use the layout function to change the layout of the graph nodes in the plot. The different layout
options automatically compute node coordinates for the plot. Alternatively, you can specify your own
node coordinates with the XData, YData, and ZData properties of the GraphPlot object.

Instead of using the default 2-D layout method, use layout to specify the 'force3' layout, which is
a 3-D force directed layout.

layout(p,'force3')
view(3)

Proportional Node Coloring

Color the graph nodes based on their degree. In this graph, all of the interior nodes have the same
maximum degree of 4, nodes along the boundary of the graph have a degree of 3, and the corner
nodes have the smallest degree of 2. Store this node coloring data as the variable NodeColors in
G.Nodes.
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G.Nodes.NodeColors = degree(G);
p.NodeCData = G.Nodes.NodeColors;
colorbar

Edge Line Width by Weight

Add some random integer weights to the graph edges, and then plot the edges such that their line
width is proportional to their weight. Since an edge line width approximately greater than 7 starts to
become cumbersome, scale the line widths such that the edge with the greatest weight has a line
width of 7. Store this edge width data as the variable LWidths in G.Edges.

G.Edges.Weight = randi([10 250],130,1);
G.Edges.LWidths = 7*G.Edges.Weight/max(G.Edges.Weight);
p.LineWidth = G.Edges.LWidths;
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Extract Subgraph

Extract and plot the top right corner of G as a subgraph, to make it easier to read the details on the
graph. The new graph, H, inherits the NodeColors and LWidths variables from G, so that recreating
the previous plot customizations is straightforward. However, the nodes in H are renumbered to
account for the new number of nodes in the graph.

H = subgraph(G,[1:31 36:41]);
p1 = plot(H,'NodeCData',H.Nodes.NodeColors,'LineWidth',H.Edges.LWidths);
colorbar
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Label Nodes and Edges

Use labeledge to label the edges whose width is larger than 6 with the label, 'Large'. The
labelnode function works in a similar manner for labeling nodes.

labeledge(p1,find(H.Edges.LWidths > 6),'Large')
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Highlight Shortest Path

Find the shortest path between node 11 and node 37 in the subgraph, H. Highlight the edges along
this path in red, and increase the size of the end nodes on the path.

path = shortestpath(H,11,37)

path = 1×10

    11    12    17    18    19    24    25    30    36    37

highlight(p1,[11 37])
highlight(p1,path,'EdgeColor','r')
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Remove the node labels and colorbar, and make all of the nodes black.

p1.NodeLabel = {};
colorbar off
p1.NodeColor = 'black';
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Find a different shortest path that ignores the edge weights. Highlight this path in green.

path2 = shortestpath(H,11,37,'Method','unweighted')

path2 = 1×10

    11    12    13    14    15    20    25    30    31    37

highlight(p1,path2,'EdgeColor','g')
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Plotting Large Graphs

It is common to create graphs that have hundreds of thousands, or even millions, of nodes and/or
edges. For this reason, plot treats large graphs slightly differently to maintain readability and
performance. The plot function makes these adjustments when working with graphs that have more
than 100 nodes:

1 The default graph layout method is always 'subspace'.
2 The nodes are no longer labeled automatically.
3 The MarkerSize property is set to 2. (Smaller graphs have a marker size of 4).
4 The ArrowSize property of directed graphs is set to 4. (Smaller directed graphs use an arrow

size of 7).

See Also
GraphPlot | digraph | graph | plot

More About
• “Directed and Undirected Graphs” on page 5-2
• GraphPlot
• “Add Node Properties to Graph Plot Data Tips” on page 5-36
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Visualize Breadth-First and Depth-First Search
This example shows how to define a function that visualizes the results of bfsearch and dfsearch
by highlighting the nodes and edges of a graph.

Create and plot a directed graph.

s = [1 2 3 3 3 3 4 5 6 7 8 9 9 9 10];
t = [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2];
G = digraph(s,t);
plot(G)

Perform a depth-first search on the graph. Specify 'allevents' to return all events in the
algorithm. Also, specify Restart as true to ensure that the search visits every node in the graph.

T = dfsearch(G, 1, 'allevents', 'Restart', true)

T =

  38x4 table

         Event          Node       Edge       EdgeIndex
    ________________    ____    __________    _________

    startnode             1     NaN    NaN       NaN   
    discovernode          1     NaN    NaN       NaN   
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    edgetonew           NaN       1      7         1   
    discovernode          7     NaN    NaN       NaN   
    edgetonew           NaN       7      3        10   
    discovernode          3     NaN    NaN       NaN   
    edgetodiscovered    NaN       3      1         3   
    edgetonew           NaN       3      5         4   
    discovernode          5     NaN    NaN       NaN   
    edgetonew           NaN       5      4         8   
    discovernode          4     NaN    NaN       NaN   
    edgetonew           NaN       4      2         7   
    discovernode          2     NaN    NaN       NaN   
    edgetonew           NaN       2      6         2   
    discovernode          6     NaN    NaN       NaN   
    edgetodiscovered    NaN       6      4         9   
    finishnode            6     NaN    NaN       NaN   
    finishnode            2     NaN    NaN       NaN   
    finishnode            4     NaN    NaN       NaN   
    finishnode            5     NaN    NaN       NaN   
    edgetofinished      NaN       3      6         5   
    edgetonew           NaN       3      8         6   
    discovernode          8     NaN    NaN       NaN   
    edgetodiscovered    NaN       8      7        11   
    finishnode            8     NaN    NaN       NaN   
    finishnode            3     NaN    NaN       NaN   
    finishnode            7     NaN    NaN       NaN   
    finishnode            1     NaN    NaN       NaN   
    startnode             9     NaN    NaN       NaN   
    discovernode          9     NaN    NaN       NaN   
    edgetofinished      NaN       9      1        12   
    edgetofinished      NaN       9      6        13   
    edgetofinished      NaN       9      8        14   
    finishnode            9     NaN    NaN       NaN   
    startnode            10     NaN    NaN       NaN   
    discovernode         10     NaN    NaN       NaN   
    edgetofinished      NaN      10      2        15   
    finishnode           10     NaN    NaN       NaN   

The values in the table, T, are useful for visualizing the search. The function visualize_search.m
shows one way to use the results of searches performed with bfsearch and dfsearch to highlight
the nodes and edges in the graph according to the table of events, T. The function pauses before each
step in the algorithm, so you can slowly step through the search by pressing any key.

Save visualize_search.m in the current folder.

function visualize_search(G,t)
% G is a graph or digraph object, and t is a table resulting from a call to
% BFSEARCH or DFSEARCH on that graph.
%
% Example inputs: G = digraph([1 2 3 3 3 3 4 5 6 7 8 9 9 9 10], ...
%     [7 6 1 5 6 8 2 4 4 3 7 1 6 8 2]);
% t = dfsearch(G, 1, 'allevents', 'Restart', true);

% Copyright 1984-2019 The MathWorks, Inc.

isundirected = isa(G, 'graph');
if isundirected
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    % Replace graph with corresponding digraph, because we need separate
    % edges for both directions
    [src, tgt] = findedge(G);
    G = digraph([src; tgt], [tgt; src], [1:numedges(G), 1:numedges(G)]);
end

h = plot(G,'NodeColor',[0.5 0.5 0.5],'EdgeColor',[0.5 0.5 0.5], ...
    'EdgeLabelMode', 'auto');

for ii=1:size(t,1)
    switch t.Event(ii)
        case 'startnode'
            highlight(h,t.Node(ii),'MarkerSize',min(h.MarkerSize)*2);
        case 'discovernode'
            highlight(h,t.Node(ii),'NodeColor','r');
        case 'finishnode'
            highlight(h,t.Node(ii),'NodeColor','k');
        otherwise
            if isundirected
                a = G.Edges.Weight;
                b = t.EdgeIndex(ii);
                edgeind = intersect(find(a == b),...
                    findedge(G,t.Edge(ii,1),t.Edge(ii,2)));
            else
                edgeind = t.EdgeIndex(ii);
            end
            switch t.Event(ii)
                case 'edgetonew'
                    highlight(h,'Edges',edgeind,'EdgeColor','b');
                case 'edgetodiscovered'
                    highlight(h,'Edges',edgeind,'EdgeColor',[0.8 0 0.8]);
                case 'edgetofinished'
                    highlight(h,'Edges',edgeind,'EdgeColor',[0 0.8 0]);
            end
    end
    
    nodeStr = t.Node;
    if isnumeric(nodeStr)
        nodeStr = num2cell(nodeStr);
        nodeStr = cellfun(@num2str, nodeStr, 'UniformOutput', false);
    end
    
    edgeStr = t.Edge;
    if isnumeric(edgeStr)
        edgeStr = num2cell(edgeStr);
        edgeStr = cellfun(@num2str, edgeStr, 'UniformOutput', false);
    end
    
    if ~isnan(t.Node(ii))
        title([char(t{ii, 1}) ' on Node ' nodeStr{ii}]);
    else
        title([char(t{ii, 1}) ' on Edge (' edgeStr{ii, 1} ', '...
            edgeStr{ii, 2},') with edge index ' sprintf('%d ', t{ii, 4})]);
    end
    
    disp('Strike any key to continue...')
    pause
end
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disp('Done.')
close all

Use this command to run visualize_search.m on graph G and search result T:

  visualize_search(G,T)

The graph begins as all gray, and then a new piece of the search result appears each time you press a
key. The search results are highlighted according to:

• 'startnode' - Starting nodes increase in size.
• 'discovernode' - Nodes turn red as they are discovered.
• 'finishnode' - Nodes turn black after they are finished.
• 'edgetonew' - Edges that lead to undiscovered nodes turn blue.
• 'edgetodiscovered' - Edges that lead to discovered nodes turn magenta.
• 'edgetofinished' - Edges that lead to finished nodes turn green.

This .gif animation shows what you see when you step through the results of
visualize_search.m.

See Also
bfsearch | dfsearch | digraph | graph
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More About
• “Directed and Undirected Graphs” on page 5-2
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Partition Graph with Laplacian Matrix
This example shows how to use the Laplacian matrix of a graph to compute the Fiedler vector. The
Fiedler vector can be used to partition the graph into two subgraphs.

Load Data

Load the data set barbellgraph.mat, which contains the sparse adjacency matrix and node
coordinates of a barbell graph.

load barbellgraph.mat

Plot Graph

Plot the graph using the custom node coordinates xy.

G = graph(A,'omitselfloops');
p = plot(G,'XData',xy(:,1),'YData',xy(:,2),'Marker','.');
axis equal

Calculate Laplacian Matrix and Fiedler Vector

Calculate the Laplacian matrix of the graph. Then, calculate the two smallest magnitude eigenvalues
and corresponding eigenvectors using eigs.

L = laplacian(G);
[V,D] = eigs(L,2,'smallestabs');
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The Fiedler vector is the eigenvector corresponding to the second smallest eigenvalue of the graph.
The smallest eigenvalue is zero, indicating that the graph has one connected component. In this case,
the second column in V corresponds to the second smallest eigenvalue D(2,2).

D

D = 2×2
10-3 ×

    0.0000         0
         0    0.2873

w = V(:,2);

Finding the Fiedler vector using eigs is scalable to larger graphs, since only a subset of the
eigenvalues and eigenvectors are computed, but for smaller graphs it is equally feasible to convert
the Laplacian matrix to full storage and use eig(full(L)).

Partition Graph

Partition the graph into two subgraphs using the Fiedler vector w. A node is assigned to subgraph A if
it has a positive value in w. Otherwise, the node is assigned to subgraph B. This practice is called a
sign cut or zero threshold cut. The sign cut minimizes the weight of the cut, subject to the upper and
lower bounds on the weight of any nontrivial cut of the graph.

Partition the graph using the sign cut. Highlight the subgraph of nodes with w>=0 in red, and the
nodes with w<0 in black.

highlight(p,find(w>=0),'NodeColor','r') % subgraph A
highlight(p,find(w<0),'NodeColor','k') % subgraph B
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For the bar bell graph, this partition bisects the graph nicely into two equal sets of nodes. However,
the sign cut does not always produce a balanced cut.

It is always possible to bisect a graph by calculating the median of w and using it as a threshold value.
This partition is called the median cut, and it guarantees an equal number of nodes in each subgraph.

You can use the median cut by first shifting the values in w by the median:

w_med = w - median(w);

Then, partition the graph by sign in w_med. For the bar bell graph, the median of w is close to zero, so
the two cuts produce similar bisections.

See Also
digraph | graph | laplacian | subgraph

More About
• “Directed and Undirected Graphs” on page 5-2
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Add Node Properties to Graph Plot Data Tips
This example shows how to customize GraphPlot data tips to display extra node properties of a
graph.

Plot GraphPlot object with Data Tip

Create a GraphPlot graphics object for a random directed graph. Add an extra node property wifi
to the graph.

rng default
G = digraph(sprandn(20, 20, 0.05));
G.Nodes.wifi = randi([0 1], 20, 1) == 1;
h = plot(G);

Add a data tip to the graph. The data tip enables you to select nodes in the graph plot and view
properties of the nodes.

dt = datatip(h,4,3);
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By default, the data tips for an undirected graph display the node number and degree. For directed
graphs, the display includes the node number, in-degree, and out-degree.

Customize Existing Data in Data Tip

You can customize the display of data tips for graphics objects by adding, editing, or removing rows
of data from the appropriate object properties. For this GraphPlot object:

• The GraphPlot object handle is h.
• The h.DataTipTemplate property contains an object that controls the display of the data tips.
• The h.DataTipTemplate.DataTipRows property holds the data for the data tips as

DataTipTextRow objects.
• Each DataTipTextRow object has Label and Value properties. You can adjust the label or data

that is displayed in the data tip by modifying these properties.

Change the label for the Node row in the data tip so that it displays as "City".

h.DataTipTemplate.DataTipRows(1).Label = "City";
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The data tip now displays a city number.

Add Data to Data Tip

The dataTipTextRow function creates a new row of data as an object that can be inserted into the
DataTipRows property. Use dataTipTextRow to create a new row of data for the data tip labeled
"WiFi" that references the values in the G.Nodes.wifi property of the graph. Add this data tip row
to the DataTipRows property as the last row.

row = dataTipTextRow('WiFi',G.Nodes.wifi);
h.DataTipTemplate.DataTipRows(end+1) = row;
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The data tip display now includes a WiFi value for each node.

Remove Data from Data Tip

To remove rows of data from the data tip, you can index into the DataTipRows property and assign
the rows to an empty matrix []. This is the same method you might use to delete rows or columns
from a matrix.

Delete the in-degree and out-degree rows from the data tip. Since these appear as the second and
third rows in the data tip display, they correspond to the second and third rows of the DataTipRows
property.

h.DataTipTemplate.DataTipRows(2:3) = [];
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The data tip display now only displays the city number and WiFi status.

See Also
DataTipTemplate Properties | datatip | digraph | graph

More About
• “Create Custom Data Tips”
• “Interactively Explore Plotted Data”
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Build Watts-Strogatz Small World Graph Model
This example shows how to construct and analyze a Watts-Strogatz small-world graph. The Watts-
Strogatz model is a random graph that has small-world network properties, such as clustering and
short average path length.

Algorithm Description

Creating a Watts-Strogatz graph has two basic steps:

1 Create a ring lattice with  nodes of mean degree . Each node is connected to its  nearest
neighbors on either side.

2 For each edge in the graph, rewire the target node with probability . The rewired edge cannot
be a duplicate or self-loop.

After the first step the graph is a perfect ring lattice. So when , no edges are rewired and the
model returns a ring lattice. In contrast, when , all of the edges are rewired and the ring lattice
is transformed into a random graph.

The file WattsStrogatz.m implements this graph algorithm for undirected graphs. The input
parameters are N, K, and beta according to the algorithm description above.

View the file WattsStrogatz.m.

% Copyright 2015 The MathWorks, Inc.

function h = WattsStrogatz(N,K,beta)
% H = WattsStrogatz(N,K,beta) returns a Watts-Strogatz model graph with N
% nodes, N*K edges, mean node degree 2*K, and rewiring probability beta.
%
% beta = 0 is a ring lattice, and beta = 1 is a random graph.

% Connect each node to its K next and previous neighbors. This constructs
% indices for a ring lattice.
s = repelem((1:N)',1,K);
t = s + repmat(1:K,N,1);
t = mod(t-1,N)+1;

% Rewire the target node of each edge with probability beta
for source=1:N    
    switchEdge = rand(K, 1) < beta;
    
    newTargets = rand(N, 1);
    newTargets(source) = 0;
    newTargets(s(t==source)) = 0;
    newTargets(t(source, ~switchEdge)) = 0;
    
    [~, ind] = sort(newTargets, 'descend');
    t(source, switchEdge) = ind(1:nnz(switchEdge));
end

h = graph(s,t);
end
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Ring Lattice

Construct a ring lattice with 500 nodes using the WattsStrogatz function. When beta is 0, the
function returns a ring lattice whose nodes all have degree 2K.

h = WattsStrogatz(500,25,0);
plot(h,'NodeColor','k','Layout','circle');
title('Watts-Strogatz Graph with $N = 500$ nodes, $K = 25$, and $\beta = 0$', ...
    'Interpreter','latex')

Some Random Edges

Increase the amount of randomness in the graph by raising beta to 0.15 and 0.50.

h2 = WattsStrogatz(500,25,0.15);
plot(h2,'NodeColor','k','EdgeAlpha',0.1);
title('Watts-Strogatz Graph with $N = 500$ nodes, $K = 25$, and $\beta = 0.15$', ...
    'Interpreter','latex')
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h3 = WattsStrogatz(500,25,0.50);
plot(h3,'NodeColor','k','EdgeAlpha',0.1);
title('Watts-Strogatz Graph with $N = 500$ nodes, $K = 25$, and $\beta = 0.50$', ...
    'Interpreter','latex')
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Random Graph

Generate a completely random graph by increasing beta to its maximum value of 1.0. This rewires
all of the edges.

h4 = WattsStrogatz(500,25,1);
plot(h4,'NodeColor','k','EdgeAlpha',0.1);
title('Watts-Strogatz Graph with $N = 500$ nodes, $K = 25$, and $\beta = 1$', ...
    'Interpreter','latex')
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Degree Distribution

The degree distribution of the nodes in the different Watts-Strogatz graphs varies. When beta is 0,
the nodes all have the same degree, 2K, so the degree distribution is just a Dirac-delta function
centered on 2K, . However, as beta increases, the degree distribution changes.

This plot shows the degree distributions for the nonzero values of beta.

histogram(degree(h2),'BinMethod','integers','FaceAlpha',0.9);
hold on
histogram(degree(h3),'BinMethod','integers','FaceAlpha',0.9);
histogram(degree(h4),'BinMethod','integers','FaceAlpha',0.8);
hold off
title('Node degree distributions for Watts-Strogatz Model Graphs')
xlabel('Degree of node')
ylabel('Number of nodes')
legend('\beta = 1.0','\beta = 0.50','\beta = 0.15','Location','NorthWest')
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Hub Formation

The Watts-Strogatz graph has a high clustering coefficient, so the nodes tend to form cliques, or small
groups of closely interconnected nodes. As beta increases towards its maximum value of 1.0, you
see an increasingly large number of hub nodes, or nodes of high relative degree. The hubs are a
common connection between other nodes and between cliques in the graph. The existence of hubs is
what permits the formation of cliques while preserving a short average path length.

Calculate the average path length and number of hub nodes for each value of beta. For the purposes
of this example, the hub nodes are nodes with degree greater than or equal to 55. These are all of the
nodes whose degree increased 10% or more compared to the original ring lattice.

n = 55;
d = [mean(mean(distances(h))), nnz(degree(h)>=n); ...
     mean(mean(distances(h2))), nnz(degree(h2)>=n); ...
     mean(mean(distances(h3))), nnz(degree(h3)>=n);
     mean(mean(distances(h4))), nnz(degree(h4)>=n)];
T = table([0 0.15 0.50 1]', d(:,1), d(:,2),...
    'VariableNames',{'Beta','AvgPathLength','NumberOfHubs'})

T =

  4x3 table

    Beta    AvgPathLength    NumberOfHubs
    ____    _____________    ____________
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       0         5.48              0     
    0.15       2.0715             20     
     0.5       1.9101             85     
       1       1.9008             92     

As beta increases, the average path length in the graph quickly falls to its limiting value. This is due
to the formation of the highly connected hub nodes, which become more numerous as beta
increases.

Plot the  Watts-Strogatz model graph, making the size and color of each node proportional to
its degree. This is an effective way to visualize the formation of hubs.

colormap hsv
deg = degree(h2);
nSizes = 2*sqrt(deg-min(deg)+0.2);
nColors = deg;
plot(h2,'MarkerSize',nSizes,'NodeCData',nColors,'EdgeAlpha',0.1)
title('Watts-Strogatz Graph with $N = 500$ nodes, $K = 25$, and $\beta = 0.15$', ...
    'Interpreter','latex')
colorbar

See Also
digraph | graph
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Use PageRank Algorithm to Rank Websites
This example shows how to use a PageRank algorithm to rank a collection of websites. Although the
PageRank algorithm was originally designed to rank search engine results, it also can be more
broadly applied to the nodes in many different types of graphs. The PageRank score gives an idea of
the relative importance of each graph node based on how it is connected to the other nodes.

Theoretically, the PageRank score is the limiting probability that someone randomly clicking links on
each website will arrive at any particular page. So pages with a high score are highly connected and
discoverable within the network, and it is more likely a random web surfer will visit that page.

Algorithm Description

At each step in the PageRank algorithm, the score of each page is updated according to,

r = (1-P)/n + P*(A'*(r./d) + s/n);

• r is a vector of PageRank scores.
• P is a scalar damping factor (usually 0.85), which is the probability that a random surfer clicks on

a link on the current page, instead of continuing on another random page.
• A' is the transpose of the adjacency matrix of the graph.
• d is a vector containing the out-degree of each node in the graph. d is set to 1 for nodes with no

outgoing edges.
• n is the scalar number of nodes in the graph.
• s is the scalar sum of the PageRank scores for pages with no links.

In other words, the rank of each page is largely based on the ranks of the pages that link to it. The
term A'*(r./d) picks out the scores of the source nodes that link to each node in the graph, and the
scores are normalized by the total number of outbound links of those source nodes. This ensures that
the sum of the PageRank scores is always 1. For example, if node 2 links to nodes 1, 3, and 4, then it
transfers 1/3 of its PageRank score to each of those nodes during each iteration of the algorithm.

Create a graph that illustrates how each node confers its PageRank score to the other nodes in the
graph.

s = {'a' 'a' 'a' 'b' 'b' 'c' 'd' 'd' 'd'};
t = {'b' 'c' 'd' 'd' 'a' 'b' 'c' 'a' 'b'};
G = digraph(s,t);
labels = {'a/3' 'a/3' 'a/3' 'b/2' 'b/2' 'c' 'd/3' 'd/3' 'd/3'};
p = plot(G,'Layout','layered','EdgeLabel',labels);
highlight(p,[1 1 1],[2 3 4],'EdgeColor','g')
highlight(p,[2 2],[1 4],'EdgeColor','r')
highlight(p,3,2,'EdgeColor','m')
title('PageRank Score Transfer Between Nodes')
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The centrality function contains an option for calculating PageRank scores.

PageRank with 6 Nodes

Create and plot a directed graph containing six nodes representing fictitious websites.

s = [1 1 2 2 3 3 3 4 5];
t = [2 5 3 4 4 5 6 1 1];
names = {'http://www.example.com/alpha', 'http://www.example.com/beta', ...
         'http://www.example.com/gamma', 'http://www.example.com/delta', ...
         'http://www.example.com/epsilon', 'http://www.example.com/zeta'};
G = digraph(s,t,[],names)

G = 
  digraph with properties:

    Edges: [9x1 table]
    Nodes: [6x1 table]

plot(G,'Layout','layered', ...
    'NodeLabel',{'alpha','beta','gamma','delta','epsilon','zeta'})
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Calculate the PageRank centrality score for this graph. Use a follow probability (otherwise known as
a damping factor) of 0.85.

pr = centrality(G,'pagerank','FollowProbability',0.85)

pr = 6×1

    0.3210
    0.1706
    0.1066
    0.1368
    0.2008
    0.0643

View the PageRank scores and degree information for each page.

G.Nodes.PageRank = pr;
G.Nodes.InDegree = indegree(G);
G.Nodes.OutDegree = outdegree(G);
G.Nodes

ans=6×4 table
                   Name                   PageRank    InDegree    OutDegree
    __________________________________    ________    ________    _________

    {'http://www.example.com/alpha'  }    0.32098        2            2    
    {'http://www.example.com/beta'   }    0.17057        1            2    
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    {'http://www.example.com/gamma'  }    0.10657        1            3    
    {'http://www.example.com/delta'  }    0.13678        2            1    
    {'http://www.example.com/epsilon'}    0.20078        2            1    
    {'http://www.example.com/zeta'   }    0.06432        1            0    

The results show that it is not just the number of page links that determines the score, but also the
quality. The alpha and gamma websites both have a total degree of 4, however alpha links to both
epsilon and beta, which also are highly ranked. gamma is only linked to by one page, beta, which
is in the middle of the list. Thus, alpha is scored higher than gamma by the algorithm.

PageRank of Websites on mathworks.com

Load the data in mathworks100.mat and view the adjacency matrix, A. This data was generated in
2015 using an automatic page crawler. The page crawler began at https://www.mathworks.com
and followed links to subsequent web pages until the adjacency matrix contained information on the
connections of 100 unique web pages.

load mathworks100.mat 
spy(A)

Create a directed graph with the sparse adjacency matrix, A, using the URLs contained in U as node
names.

G = digraph(A,U)

G = 
  digraph with properties:
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    Edges: [632x1 table]
    Nodes: [100x1 table]

Plot the graph using the force layout.

plot(G,'NodeLabel',{},'NodeColor',[0.93 0.78 0],'Layout','force');
title('Websites linked to https://www.mathworks.com')

Compute the PageRank scores for the graph, G, using 200 iterations and a damping factor of 0.85.
Add the scores and degree information to the nodes table of the graph.

pr = centrality(G,'pagerank','MaxIterations',200,'FollowProbability',0.85);
G.Nodes.PageRank = pr;
G.Nodes.InDegree = indegree(G);
G.Nodes.OutDegree = outdegree(G);

View the top 25 resulting scores.

G.Nodes(1:25,:)

ans=25×4 table
                                         Name                                         PageRank    InDegree    OutDegree
    ______________________________________________________________________________    ________    ________    _________

    {'https://www.mathworks.com'                                                 }    0.044342       20          14    
    {'https://ch.mathworks.com'                                                  }    0.043085       20          14    
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    {'https://cn.mathworks.com'                                                  }    0.043085       20          14    
    {'https://jp.mathworks.com'                                                  }    0.043085       20          14    
    {'https://kr.mathworks.com'                                                  }    0.043085       20          14    
    {'https://uk.mathworks.com'                                                  }    0.043085       20          14    
    {'https://au.mathworks.com'                                                  }    0.043085       20          14    
    {'https://de.mathworks.com'                                                  }    0.043085       20          14    
    {'https://es.mathworks.com'                                                  }    0.043085       20          14    
    {'https://fr.mathworks.com'                                                  }    0.043085       20          14    
    {'https://in.mathworks.com'                                                  }    0.043085       20          14    
    {'https://it.mathworks.com'                                                  }    0.043085       20          14    
    {'https://nl.mathworks.com'                                                  }    0.043085       20          14    
    {'https://se.mathworks.com'                                                  }    0.043085       20          14    
    {'https://www.mathworks.com/index.html%3Fnocookie%3Dtrue'                    }      0.0015        0           1    
    {'https://www.mathworks.com/company/aboutus/policies_statements/patents.html'}    0.007714        6           6    
      ⋮

Extract and plot a subgraph containing all nodes whose score is greater than 0.005. Color the graph
nodes based on their PageRank score.

H = subgraph(G,find(G.Nodes.PageRank > 0.005));
plot(H,'NodeLabel',{},'NodeCData',H.Nodes.PageRank,'Layout','force');
title('Websites linked to https://www.mathworks.com')
colorbar

The PageRank scores for the top websites are all quite similar, such that a random web surfer has
about a 4.5% chance to land on each page. This small group of highly connected pages forms a clique

 Use PageRank Algorithm to Rank Websites

5-53



in the center of the plot. Connected to this central clique are several smaller cliques, which are highly
connected amongst themselves.

References

Moler, C. Experiments with MATLAB. Chapter 7: Google PageRank. MathWorks, Inc., 2011.

See Also
centrality | digraph | graph
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Label Graph Nodes and Edges
This example shows how to add and customize labels on graph nodes and edges.

Create and Plot Graph

Create a graph representing the gridded streets and intersections in a city. Add weights to the edges
so that the main avenues and cross streets appear differently in the plot. Plot the graph with the edge
line widths proportional to the weight of the edge.

s = [1 1 2 2 3 4 4 5 5 6 7 7 8 8 9 10 11];
t = [2 4 3 5 6 5 7 6 8 9 8 10 9 11 12 11 12];
weights = [1 5 1 5 5 1 5 1 5 5 1 5 1 5 5 1 1];
G = graph(s,t,weights);
P = plot(G,'LineWidth',G.Edges.Weight);

Add Node Labels

For graphs with 100 or fewer nodes, MATLAB® automatically labels the nodes using the numeric
node indices or node names (larger graphs omit these labels by default). However, you can change
the node labels by adjusting the NodeLabel property of the GraphPlot object P or by using the
labelnode function. Therefore, even if the nodes have names, you can use labels that are different
from the names.

Remove the default numeric node labels. Label one of the intersections as Home and another as Work.
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labelnode(P,1:12,'')
labelnode(P,5,'Home')
labelnode(P,12,'Work')

Add Edge Labels

The edges in a plotted graph are not labeled automatically. You can add edge labels by changing the
value of the EdgeLabel property of the GraphPlot object P or by using the labeledge function.

Add edge labels for streets in New York City. The order of the edges is defined in the G.Edges table
of the graph, so the order of the labels you specify must respect that order. It is convenient to store
edge labels directly in the G.Edges table, so that the edge name lives right next to the other edge
information.

G.Edges

ans=17×2 table
    EndNodes    Weight
    ________    ______

     1     2      1   
     1     4      5   
     2     3      1   
     2     5      5   
     3     6      5   
     4     5      1   
     4     7      5   

5 Graph and Network Algorithms

5-56



     5     6      1   
     5     8      5   
     6     9      5   
     7     8      1   
     7    10      5   
     8     9      1   
     8    11      5   
     9    12      5   
    10    11      1   
      ⋮

This example has 17 edges but only 7 unique street names. Therefore, it makes sense to define the
street names in a cell array and then index into the cell array to retrieve the desired street name for
each edge. Add a variable to the G.Edges table containing the street names.

streets = {'8th Ave' '7th Ave' '6th Ave' '5th Ave' ...
    'W 20th St' 'W 21st St' 'W 22nd St'}';
inds = [1 5 1 6 7 2 5 2 6 7 3 5 3 6 7 4 4];
G.Edges.StreetName = streets(inds);
G.Edges

ans=17×3 table
    EndNodes    Weight     StreetName  
    ________    ______    _____________

     1     2      1       {'8th Ave'  }
     1     4      5       {'W 20th St'}
     2     3      1       {'8th Ave'  }
     2     5      5       {'W 21st St'}
     3     6      5       {'W 22nd St'}
     4     5      1       {'7th Ave'  }
     4     7      5       {'W 20th St'}
     5     6      1       {'7th Ave'  }
     5     8      5       {'W 21st St'}
     6     9      5       {'W 22nd St'}
     7     8      1       {'6th Ave'  }
     7    10      5       {'W 20th St'}
     8     9      1       {'6th Ave'  }
     8    11      5       {'W 21st St'}
     9    12      5       {'W 22nd St'}
    10    11      1       {'5th Ave'  }
      ⋮

Update the EdgeLabel property to reference these street names.

P.EdgeLabel = G.Edges.StreetName;
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Adjust Font Properties

The node and edge labels in a graph plot have their own properties that control the appearance and
style of the labels. Since the properties are decoupled, you can use different styles for the node labels
and the edge labels.

For Node labels, you can adjust:

• NodeLabel
• NodeLabelColor
• NodeFontName
• NodeFontSize
• NodeFontWeight
• NodeFontAngle

For Edge labels, you can adjust:

• EdgeLabel
• EdgeLabelColor
• EdgeFontName
• EdgeFontSize
• EdgeFontWeight
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• EdgeFontAngle

Use these properties to adjust the fonts in this example with New York City Streets:

• Change NodeFontSize and NodeLabelColor so that the intersection labels are 12 pt. font and
red.

• Change EdgeFontWeight, EdgeFontAngle, and EdgeFontSize to use a larger, bold font for
streets in one direction and a smaller, italic font for streets in the other direction.

• Change EdgeFontName to use Times New Roman for the edge labels.

You can use the highlight function to change the graph properties of a subset of the graph edges.
Create a logical index isAvenue that is true for edge labels containing the word 'Ave'. Using this
logical vector as an input to highlight, label all of the Avenues in one way, and all of the non-
Avenues another way.

P.NodeFontSize = 12;
P.NodeLabelColor = 'r';
isAvenue = contains(P.EdgeLabel, 'Ave');
highlight(P, 'Edges', isAvenue, 'EdgeFontAngle', 'italic', 'EdgeFontSize', 7);
highlight(P, 'Edges', ~isAvenue, 'EdgeFontWeight', 'bold', 'EdgeFontSize', 10);
P.EdgeFontName = 'Times New Roman';

Highlight Edges

Find the shortest path between the Home and Work nodes and examine which streets are on the
path. Highlight the nodes and edges on the path in red and remove the edge labels for all edges that
are not on the path.
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[path,d,pathEdges] = shortestpath(G,5,12)

path = 1×4

     5     6     9    12

d = 11

pathEdges = 1×3

     8    10    15

G.Edges.StreetName(pathEdges,:)

ans = 3x1 cell
    {'7th Ave'  }
    {'W 22nd St'}
    {'W 22nd St'}

highlight(P,'Edges',pathEdges,'EdgeColor','r')
highlight(P,path,'NodeColor','r')
labeledge(P, setdiff(1:numedges(G), pathEdges), '')

See Also
GraphPlot
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More About
• “Graph Plotting and Customization” on page 5-17
• “Add Node Properties to Graph Plot Data Tips” on page 5-36
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Functions of One Variable

• “Create and Evaluate Polynomials” on page 6-2
• “Roots of Polynomials” on page 6-4
• “Integrate and Differentiate Polynomials” on page 6-9
• “Polynomial Curve Fitting” on page 6-11
• “Predicting the US Population” on page 6-13
• “Roots of Scalar Functions” on page 6-18
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Create and Evaluate Polynomials
This example shows how to represent a polynomial as a vector in MATLAB® and evaluate the
polynomial at points of interest.

Representing Polynomials

MATLAB® represents polynomials as row vectors containing coefficients ordered by descending
powers. For example, the three-element vector

p = [p2 p1 p0];

represents the polynomial

p(x) = p2x2 + p1x + p0 .

Create a vector to represent the quadratic polynomial p(x) = x2− 4x + 4.

p = [1 -4 4];

Intermediate terms of the polynomial that have a coefficient of 0 must also be entered into the vector,
since the 0 acts as a placeholder for that particular power of x.

Create a vector to represent the polynomial p(x) = 4x5− 3x2 + 2x + 33.

p = [4 0 0 -3 2 33];

Evaluating Polynomials

After entering the polynomial into MATLAB® as a vector, use the polyval function to evaluate the
polynomial at a specific value.

Use polyval to evaluate p(2).

polyval(p,2)

ans = 153

Alternatively, you can evaluate a polynomial in a matrix sense using polyvalm. The polynomial
expression in one variable, p(x) = 4x5− 3x2 + 2x + 33, becomes the matrix expression

p(X) = 4X5− 3X2 + 2X + 33I,

where X is a square matrix and I is the identity matrix.

Create a square matrix, X, and evaluate p at X.

X = [2 4 5; -1 0 3; 7 1 5];
Y = polyvalm(p,X)

Y = 3×3

      154392       78561      193065
       49001       24104       59692
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      215378      111419      269614

See Also
poly | polyval | polyvalm | roots

More About
• “Roots of Polynomials” on page 6-4
• “Integrate and Differentiate Polynomials” on page 6-9
• “Polynomial Curve Fitting” on page 6-11
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Roots of Polynomials
This example shows several different methods to calculate the roots of a polynomial.

In this section...
“Numeric Roots” on page 6-4
“Roots Using Substitution” on page 6-4
“Roots in a Specific Interval” on page 6-5
“Symbolic Roots” on page 6-7

Numeric Roots
The roots function calculates the roots of a single-variable polynomial represented by a vector of
coefficients.

For example, create a vector to represent the polynomial x2− x− 6, then calculate the roots.

p = [1 -1 -6];
r = roots(p)

r =

     3
    -2

By convention, MATLAB returns the roots in a column vector.

The poly function converts the roots back to polynomial coefficients. When operating on vectors,
poly and roots are inverse functions, such that poly(roots(p)) returns p (up to roundoff error,
ordering, and scaling).

p2 = poly(r)

p2 =

     1    -1    -6

When operating on a matrix, the poly function computes the characteristic polynomial of the matrix.
The roots of the characteristic polynomial are the eigenvalues of the matrix. Therefore,
roots(poly(A)) and eig(A) return the same answer (up to roundoff error, ordering, and scaling).

Roots Using Substitution
You can solve polynomial equations involving trigonometric functions by simplifying the equation
using a substitution. The resulting polynomial of one variable no longer contains any trigonometric
functions.

For example, find the values of θ that solve the equation

3cos2(θ)− sin(θ) + 3 = 0 .

Use the fact that cos2(θ) = 1− sin2(θ) to express the equation entirely in terms of sine functions:

6 Functions of One Variable

6-4



−3sin2(θ)− sin(θ) + 6 = 0 .

Use the substitution x = sin(θ) to express the equation as a simple polynomial equation:

−3x2− x + 6 = 0 .

Create a vector to represent the polynomial.

p = [-3 -1 6];

Find the roots of the polynomial.

r = roots(p)

r = 2×1

   -1.5907
    1.2573

To undo the substitution, use θ = sin−1(x). The asin function calculates the inverse sine.

theta = asin(r)

theta = 2×1 complex

  -1.5708 + 1.0395i
   1.5708 - 0.7028i

Verify that the elements in theta are the values of θ that solve the original equation (within roundoff
error).

f = @(Z) 3*cos(Z).^2 - sin(Z) + 3;
f(theta)

ans = 2×1 complex
10-14 ×

  -0.0888 + 0.0647i
   0.2665 + 0.0399i

Roots in a Specific Interval
Use the fzero function to find the roots of a polynomial in a specific interval. Among other uses, this
method is suitable if you plot the polynomial and want to know the value of a particular root.

For example, create a function handle to represent the polynomial 3x7 + 4x6 + 2x5 + 4x4 + x3 + 5x2.

p = @(x) 3*x.^7 + 4*x.^6 + 2*x.^5 + 4*x.^4 + x.^3 + 5*x.^2;

Plot the function over the interval [− 2, 1].

x = -2:0.1:1;
plot(x,p(x))
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ylim([-100 50])
grid on
hold on

From the plot, the polynomial has a trivial root at 0 and another near -1.5. Use fzero to calculate
and plot the root that is near -1.5.

Z = fzero(p, -1.5)

Z = -1.6056

plot(Z,p(Z),'r*')
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Symbolic Roots
If you have Symbolic Math Toolbox™, then there are additional options for evaluating polynomials
symbolically. One way is to use the solve function.

syms x
s = solve(x^2-x-6)

s =
 
 -2
  3

Another way is to use the factor function to factor the polynomial terms.

F = factor(x^2-x-6)

F =
 
[ x + 2, x - 3]

See “Solve Algebraic Equation” (Symbolic Math Toolbox) for more information.

See Also
eig | poly | roots
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More About
• “Create and Evaluate Polynomials” on page 6-2
• “Roots of Scalar Functions” on page 6-18
• “Integrate and Differentiate Polynomials” on page 6-9
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Integrate and Differentiate Polynomials
This example shows how to use the polyint and polyder functions to analytically integrate or
differentiate any polynomial represented by a vector of coefficients.

Use polyder to obtain the derivative of the polynomial p(x) = x3− 2x− 5. The resulting polynomial is
q(x) = d

dxp(x) = 3x2− 2.

p = [1 0 -2 -5];
q = polyder(p)

q = 1×3

     3     0    -2

Similarly, use polyint to integrate the polynomial p(x) = 4x3− 3x2 + 1. The resulting polynomial is
q(x) =∫p(x)dx = x4− x3 + x.

p = [4 -3 0 1];
q = polyint(p)

q = 1×5

     1    -1     0     1     0

polyder also computes the derivative of the product or quotient of two polynomials. For example,
create two vectors to represent the polynomials a(x) = x2 + 3x + 5 and b(x) = 2x2 + 4x + 6.

a = [1 3 5];
b = [2 4 6];

Calculate the derivative d
dx a(x)b(x)  by calling polyder with a single output argument.

c = polyder(a,b)

c = 1×4

     8    30    56    38

Calculate the derivative d
dx

a(x)
b(x)  by calling polyder with two output arguments. The resulting

polynomial is

d
dx

a(x)
b(x) = −2x2− 8x− 2

4x4 + 16x3 + 40x2 + 48x + 36
= q(x)

d(x) .

[q,d] = polyder(a,b)

q = 1×3
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    -2    -8    -2

d = 1×5

     4    16    40    48    36

See Also
conv | deconv | polyder | polyint

More About
• “Analytic Solution to Integral of Polynomial” on page 15-7
• “Create and Evaluate Polynomials” on page 6-2
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Polynomial Curve Fitting
This example shows how to fit a polynomial curve to a set of data points using the polyfit function.
You can use polyfit to find the coefficients of a polynomial that fits a set of data in a least-squares
sense using the syntax

p = polyfit(x,y,n),

where:

• x and y are vectors containing the x and y coordinates of the data points
• n is the degree of the polynomial to fit

Create some x-y test data for five data points.

x = [1 2 3 4 5]; 
y = [5.5 43.1 128 290.7 498.4];

Use polyfit to find a third-degree polynomial that approximately fits the data.

p = polyfit(x,y,3)

p = 1×4

   -0.1917   31.5821  -60.3262   35.3400

After you obtain the polynomial for the fit line using polyfit, you can use polyval to evaluate the
polynomial at other points that might not have been included in the original data.

Compute the values of the polyfit estimate over a finer domain and plot the estimate over the real
data values for comparison. Include an annotation of the equation for the fit line.

x2 = 1:.1:5;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)
grid on
s = sprintf('y = (%.1f) x^3 + (%.1f) x^2 + (%.1f) x + (%.1f)',p(1),p(2),p(3),p(4));
text(2,400,s)
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See Also
polyfit | polyval

More About
• “Programmatic Fitting”
• “Create and Evaluate Polynomials” on page 6-2
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Predicting the US Population
This example shows that extrapolating data using polynomials of even modest degree is risky and
unreliable.

This example is older than MATLAB®. It started as an exercise in Computer Methods for
Mathematical Computations, by Forsythe, Malcolm and Moler, published by Prentice-Hall in 1977.

Now, MATLAB makes it much easier to vary the parameters and see the results, but the underlying
mathematical principles are unchanged.

Create and plot two vectors with US Census data from 1910 to 2000.

% Time interval
t = (1910:10:2000)';

% Population
p = [91.972 105.711 123.203 131.669 150.697...
    179.323 203.212 226.505 249.633 281.422]';

% Plot
plot(t,p,'bo');
axis([1910 2020 0 400]);
title('Population of the U.S. 1910-2000');
ylabel('Millions');

What is your guess for the population in the year 2010?
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p

p = 10×1

   91.9720
  105.7110
  123.2030
  131.6690
  150.6970
  179.3230
  203.2120
  226.5050
  249.6330
  281.4220

Fit the data with a polynomial in t and use it to extrapolate the population at t = 2010. Obtain the
coefficients in the polynomial by solving a linear system of equations involving an 11-by-11
Vandermonde matrix, with elements as powers of scaled time, A(i,j) = s(i)^(n-j).

n = length(t);
s = (t-1950)/50;
A = zeros(n);
A(:,end) = 1;
for j = n-1:-1:1
   A(:,j) = s .* A(:,j+1);
end

Obtain the coefficients c for a polynomial of degree d that fits the data p by solving a linear system of
equations involving the last d+1 columns of the Vandermonde matrix:

A(:,n-d:n)*c ~= p

• If d < 10, then more equations than unknowns exist, and a least-squares solution is appropriate.
• If d == 10, then you can solve the equations exactly and the polynomial actually interpolates the

data.

In either case, use the backslash operator to solve the system. The coefficients for the cubic fit are:

c = A(:,n-3:n)\p

c = 4×1

   -5.7042
   27.9064
  103.1528
  155.1017

Now evaluate the polynomial at every year from 1910 to 2010 and plot the results.

v = (1910:2020)';
x = (v-1950)/50;
w = (2010-1950)/50;
y = polyval(c,x);
z = polyval(c,w);

hold on
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plot(v,y,'k-');
plot(2010,z,'ks');
text(2010,z+15,num2str(z));
hold off

Compare the cubic fit with the quartic. Notice that the extrapolated point is very different.

c = A(:,n-4:n)\p;
y = polyval(c,x);
z = polyval(c,w);

hold on
plot(v,y,'k-');
plot(2010,z,'ks');
text(2010,z-15,num2str(z));
hold off
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As the degree increases, the extrapolation becomes even more erratic.

cla
plot(t,p,'bo')
hold on
axis([1910 2020 0 400])
colors = hsv(8);
labels = {'data'};
for d = 1:8
   [Q,R] = qr(A(:,n-d:n));
   R = R(1:d+1,:);
   Q = Q(:,1:d+1);
   c = R\(Q'*p);    % Same as c = A(:,n-d:n)\p;
   y = polyval(c,x);
   z = polyval(c,11);
   plot(v,y,'color',colors(d,:));
   labels{end+1} = ['degree = ' int2str(d)];
end
legend(labels, 'Location', 'NorthWest')
hold off

6 Functions of One Variable

6-16



See Also
polyfit
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Roots of Scalar Functions
Solving a Nonlinear Equation in One Variable

The fzero function attempts to find a root of one equation with one variable. You can call this
function with either a one-element starting point or a two-element vector that designates a starting
interval. If you give fzero a starting point x0, fzero first searches for an interval around this point
where the function changes sign. If the interval is found, fzero returns a value near where the
function changes sign. If no such interval is found, fzero returns NaN. Alternatively, if you know two
points where the function value differs in sign, you can specify this starting interval using a two-
element vector; fzero is guaranteed to narrow down the interval and return a value near a sign
change.

The following sections contain two examples that illustrate how to find a zero of a function using a
starting interval and a starting point. The examples use the function humps.m, which is provided with
MATLAB®. The following figure shows the graph of humps.

x = -1:.01:2;
y = humps(x);
plot(x,y)
xlabel('x');
ylabel('humps(x)')
grid on
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Setting Options For fzero

You can control several aspects of the fzero function by setting options. You set options using
optimset. Options include:

• Choosing the amount of display fzero generates — see “Set Optimization Options” on page 9-
10, Using a Starting Interval on page 6-0 , and Using a Starting Point on page 6-0 .

• Choosing various tolerances that control how fzero determines it is at a root — see “Set
Optimization Options” on page 9-10.

• Choosing a plot function for observing the progress of fzero towards a root — see “Optimization
Solver Plot Functions” on page 9-20.

• Using a custom-programmed output function for observing the progress of fzero towards a root
— see “Optimization Solver Output Functions” on page 9-14.

Using a Starting Interval

The graph of humps indicates that the function is negative at x = -1 and positive at x = 1. You can
confirm this by calculating humps at these two points.

humps(1)

ans = 16

humps(-1)

ans = -5.1378

Consequently, you can use [-1 1] as a starting interval for fzero.

The iterative algorithm for fzero finds smaller and smaller subintervals of [-1 1]. For each
subinterval, the sign of humps differs at the two endpoints. As the endpoints of the subintervals get
closer and closer, they converge to zero for humps.

To show the progress of fzero at each iteration, set the Display option to iter using the
optimset function.

options = optimset('Display','iter');

Then call fzero as follows:

a = fzero(@humps,[-1 1],options)

 
 Func-count    x          f(x)             Procedure
    2              -1      -5.13779        initial
    3       -0.513876      -4.02235        interpolation
    4       -0.513876      -4.02235        bisection
    5       -0.473635      -3.83767        interpolation
    6       -0.115287      0.414441        bisection
    7       -0.115287      0.414441        interpolation
    8       -0.132562    -0.0226907        interpolation
    9       -0.131666    -0.0011492        interpolation
   10       -0.131618   1.88371e-07        interpolation
   11       -0.131618   -2.7935e-11        interpolation
   12       -0.131618   8.88178e-16        interpolation
   13       -0.131618   8.88178e-16        interpolation
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Zero found in the interval [-1, 1]

a = -0.1316

Each value x represents the best endpoint so far. The Procedure column tells you whether each step
of the algorithm uses bisection or interpolation.

You can verify that the function value at a is close to zero by entering

humps(a)

ans = 8.8818e-16

Using a Starting Point

Suppose you do not know two points at which the function values of humps differ in sign. In that case,
you can choose a scalar x0 as the starting point for fzero. fzero first searches for an interval
around this point on which the function changes sign. If fzero finds such an interval, it proceeds
with the algorithm described in the previous section. If no such interval is found, fzero returns NaN.

For example, set the starting point to -0.2, the Display option to Iter, and call fzero:

options = optimset('Display','iter');
a = fzero(@humps,-0.2,options)

 
Search for an interval around -0.2 containing a sign change:
 Func-count    a          f(a)             b          f(b)        Procedure
    1            -0.2      -1.35385          -0.2      -1.35385   initial interval
    3       -0.194343      -1.26077     -0.205657      -1.44411   search
    5          -0.192      -1.22137        -0.208       -1.4807   search
    7       -0.188686      -1.16477     -0.211314      -1.53167   search
    9          -0.184      -1.08293        -0.216      -1.60224   search
   11       -0.177373     -0.963455     -0.222627      -1.69911   search
   13          -0.168     -0.786636        -0.232      -1.83055   search
   15       -0.154745      -0.51962     -0.245255      -2.00602   search
   17          -0.136     -0.104165        -0.264      -2.23521   search
   18        -0.10949      0.572246        -0.264      -2.23521   search
 
Search for a zero in the interval [-0.10949, -0.264]:
 Func-count    x          f(x)             Procedure
   18        -0.10949      0.572246        initial
   19       -0.140984     -0.219277        interpolation
   20       -0.132259    -0.0154224        interpolation
   21       -0.131617   3.40729e-05        interpolation
   22       -0.131618  -6.79505e-08        interpolation
   23       -0.131618  -2.98428e-13        interpolation
   24       -0.131618   8.88178e-16        interpolation
   25       -0.131618   8.88178e-16        interpolation
 
Zero found in the interval [-0.10949, -0.264]

a = -0.1316

The endpoints of the current subinterval at each iteration are listed under the headings a and b,
while the corresponding values of humps at the endpoints are listed under f(a) and f(b),
respectively.
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Note: The endpoints a and b are not listed in any specific order: a can be greater than b or less than
b.

For the first nine steps, the sign of humps is negative at both endpoints of the current subinterval,
which is shown in the output. At the tenth step, the sign of humps is positive at a, -0.10949, but
negative at b, -0.264. From this point on, the algorithm continues to narrow down the interval
[-0.10949 -0.264], as described in the previous section, until it reaches the value -0.1316.

See Also

More About
• “Roots of Polynomials” on page 6-4
• “Optimizing Nonlinear Functions” on page 9-2
• “Systems of Nonlinear Equations” (Optimization Toolbox)
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Computational Geometry

• “Triangulation Representations” on page 7-2
• “Working with Delaunay Triangulations” on page 7-14
• “Creating and Editing Delaunay Triangulations” on page 7-38
• “Spatial Searching” on page 7-53
• “Voronoi Diagrams” on page 7-60
• “Types of Region Boundaries” on page 7-67
• “Computing the Convex Hull” on page 7-73
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Triangulation Representations

2-D and 3-D Domains
Triangulations are often used to represent 2-D and 3-D geometric domains in application areas such
as computer graphics, physical modeling, geographic information systems, medical imaging, and
more. The map polygon shown here

can be represented by the triangulation on the map shown below.

The triangulation decomposes a complex polygon into a collection of simpler triangular polygons. You
can use these polygons for developing geometric-based algorithms or graphics applications.

Similarly, you can represent the boundary of a 3-D geometric domain using a triangulation. The figure
below shows the convex hull of a set of points in 3-D space. Each facet of the hull is a triangle.
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Triangulation Matrix Format
MATLAB uses a matrix format to represent triangulations. This format has two parts:

• The vertices, represented as a matrix in which each row contains the coordinates of a point in the
triangulation.

• The triangulation connectivity, represented as a matrix in which each row defines a triangle or
tetrahedron.

This figure shows a simple 2-D triangulation.

The following table shows the vertex information.

Vertices
Vertex ID x-coordinate y-coordinate
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Vertices
V1 2.5 8.0
V2 6.5 8.0
V3 2.5 5.0
V4 6.5 5.0
V5 1.0 6.5
V6 8.0 6.5

The data in the previous table is stored as a matrix in the MATLAB environment. The vertex IDs are
labels used for identifying specific vertices. They are shown to illustrate the concept of a vertex ID,
but they are not stored explicitly. Instead, the row numbers of the matrix serve as the vertex IDs.

The triangulation connectivity data is shown in this table.

Connectivity
Triangle ID IDs of Bounding Vertices
T1 5 3 1
T2 3 2 1
T3 3 4 2
T4 4 6 2

The data in this table is stored as a matrix in the MATLAB environment. The triangle IDs are labels
used for identifying specific triangles. They are shown to illustrate the concept of a triangle ID, but
they are not stored explicitly. Instead, the row numbers of the matrix serve as the triangle IDs.

You can see that triangle T1 is defined by three vertices, {V5, V3, V1}. Similarly, T4 is defined by
the vertices, {V4, V6, V2}. This format extends naturally to higher dimensions, which require
additional columns of data. For example, a tetrahedron in 3-D space is defined by four vertices, each
of which have three coordinates, (x, y, z).

You can represent and query the following types of triangulations using MATLAB:

• 2-D triangulations consisting of triangles bounded by vertices and edges
• 3-D surface triangulations consisting of triangles bounded by vertices and edges
• 3-D triangulations consisting of tetrahedra bounded by vertices, edges, and faces

Querying Triangulations Using the triangulation Class
The matrix format provides a compact low-level, array-based representation for triangulations. When
you use triangulations to develop algorithms, you might need more information about the geometric
properties, topology, and adjacency information.

For example, you might compute the triangle incenters before plotting the annotated triangulation
shown below. In this case, you use the incenters to display the triangle labels (T1, T2, etc.) within
each triangle. If you want to plot the boundary in red, you need to determine the edges that are
referenced by only one triangle.
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The triangulation Class

You can use triangulation to create an in-memory representation of any 2-D or 3-D triangulation
data that is in matrix format, such as the matrix output from the delaunay function or other
software tools. When your data is represented using triangulation, you can perform topological
and geometric queries, which you can use to develop geometric algorithms. For example, you can find
the triangles or tetrahedra attached to a vertex, those that share an edge, their circumcenters, and
other features.

You can create a triangulation in one of two ways:

• Pass existing data that you have in matrix format to triangulation. This data can be the output
from a MATLAB function, such as delaunay or convhull. You also can import triangulation data
that was created by another software application. When you work with imported data, be sure the
connectivity data references the vertex array using 1-based indexing instead of 0-based indexing.

• Pass a set of points to delaunayTriangulation. The resulting Delaunay triangulation is a
special kind of triangulation. This means you can perform any triangulation query on your
data, as well as any Delaunay-specific query. In more formal MATLAB language terms,
delaunayTriangulation is a subclass of triangulation.

Creating a triangulation from Matrix Data

This example shows how to use the triangulation matrix data to create a triangulation, explore what it
is, and explore what it can do.

Create a matrix, P, that contains the vertex data.

P = [ 2.5    8.0
      6.5    8.0
      2.5    5.0
      6.5    5.0
      1.0    6.5
      8.0    6.5];

Define the connectivity, T.
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T = [5  3  1;
     3  2  1;
     3  4  2;
     4  6  2];

Create a triangulation from this data.

TR = triangulation(T,P)

TR = 
  triangulation with properties:

              Points: [6x2 double]
    ConnectivityList: [4x3 double]

Access the properties in a triangulation in the same way you access the fields of a struct. For
example, examine the Points property, which contains the coordinates of the vertices.

TR.Points

ans = 6×2

    2.5000    8.0000
    6.5000    8.0000
    2.5000    5.0000
    6.5000    5.0000
    1.0000    6.5000
    8.0000    6.5000

Next, examine the connectivity.

TR.ConnectivityList

ans = 4×3

     5     3     1
     3     2     1
     3     4     2
     4     6     2

The Points and ConnectivityList properties define the matrix data for the triangulation.

The triangulation class is a wrapper around the matrix data. The real benefit is the usefulness of
the triangulation class methods. The methods are like functions that accept a triangulation
and other relevant input data.

The triangulation class provides an easy way to index into the ConnectivityList property
matrix. Access the first triangle in the triangulation.

TR.ConnectivityList(1,:)

ans = 1×3

     5     3     1
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Another way of getting the first triangle is TR(1,:).

Examine the first vertex of the first triangle.

TR(1,1)

ans = 5

Examine the second vertex of the first triangle.

TR(1,2)

ans = 3

Now, examine all the triangles in the triangulation.

TR(:,:)

ans = 4×3

     5     3     1
     3     2     1
     3     4     2
     4     6     2

Use triplot to plot the triangulation. The triplot function is not a triangulation method,
but it accepts and can plot a triangulation.

figure
triplot(TR)
axis equal
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Use the triangulation method, freeBoundary, to query the free boundary and highlight it in a
plot. This method returns the edges of the triangulation that are shared by only one triangle. The
returned edges are expressed in terms of the vertex IDs.

boundaryedges = freeBoundary(TR)';

Now plot the boundary edges as a red line.

hold on 
plot(P(boundaryedges,1),P(boundaryedges,2),'-r','LineWidth',2)
hold off
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You can use the freeBoundary method to validate a triangulation. For example, if you observed red
edges in the interior of the triangulation, then it would indicate a problem in how the triangles are
connected.

Creating a triangulation Using delaunayTriangulation

This example shows how to create a Delaunay triangulation using delaunayTriangulation.

When you create a Delaunay triangulation using the delaunayTriangulation class, you
automatically get access to the triangulation methods because delaunayTriangulation is a
subclass of triangulation.

Create a delaunayTriangulation from a set of points.

P = [ 2.5    8.0
      6.5    8.0
      2.5    5.0
      6.5    5.0
      1.0    6.5
      8.0    6.5];

DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [6x2 double]
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    ConnectivityList: [4x3 double]
         Constraints: []

The resulting delaunayTriangulation object has the properties, Points and
ConnectivityList, just like a triangulation object.

You can access the triangulation using direct indexing, just like triangulation. For example,
examine the connectivity of the first triangle.

DT(1,:)

ans = 1×3

     5     3     1

Next, examine the connectivity of the entire triangulation.

DT(:,:)

ans = 4×3

     5     3     1
     3     4     1
     1     4     2
     4     6     2

Use the triplot function to plot the triangulation.

triplot(DT)
axis equal
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The parent class, triangulation, provides the incenter method to compute the incenters of each
triangle.

IC = incenter(DT)

IC = 4×2

    1.8787    6.5000
    3.5000    6.0000
    5.5000    7.0000
    7.1213    6.5000

The returned value, IC, is an array of coordinates representing the incenters of the triangles.

Now, use the incenters to find the positions for placing triangle labels on the plot.

hold on
numtri = size(DT,1);
trilabels = arrayfun(@(P) {sprintf('T%d', P)}, (1:numtri)');
Htl = text(IC(:,1),IC(:,2),trilabels,'FontWeight','bold', ...
'HorizontalAlignment','center','Color','blue');
hold off
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Instead of creating a Delaunay triangulation using delaunayTriangulation, you could use the
delaunay function to create the triangulation connectivity data, and then pass the connectivity data
to triangulation. For example,

P = [ 2.5    8.0
      6.5    8.0
      2.5    5.0
      6.5    5.0
      1.0    6.5
      8.0    6.5];

T = delaunay(P);
TR = triangulation(T,P);
IC = incenter(TR);

Both approaches are valid in this example, but if you want to create a Delaunay triangulation and
perform queries on it, then you should use delaunayTriangulation for these reasons:

• The delaunayTriangulation class provides additional methods that are useful for working with
triangulations. For example, you can to perform nearest-neighbor and point-in-triangle searches.

• It allows you to edit the triangulation to add, move, or remove points.
• It allows you to create constrained Delaunay triangulations. This allows you to create a

triangulation for a 2-D domain.
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See Also
delaunay | delaunayTriangulation | freeBoundary | triangulation | triplot

More About
• “Triangulation Representations” on page 7-2
• “Working with Delaunay Triangulations” on page 7-14
• “Spatial Searching” on page 7-53
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Working with Delaunay Triangulations
In this section...
“Definition of Delaunay Triangulation” on page 7-14
“Creating Delaunay Triangulations” on page 7-15
“Triangulation of Point Sets Containing Duplicate Locations” on page 7-35

Definition of Delaunay Triangulation
Delaunay triangulations are widely used in scientific computing in many diverse applications. While
there are numerous algorithms for computing triangulations, it is the favorable geometric properties
of the Delaunay triangulation that make it so useful.

The fundamental property is the Delaunay criterion. In the case of 2-D triangulations, this is often
called the empty circumcircle criterion. For a set of points in 2-D, a Delaunay triangulation of these
points ensures the circumcircle associated with each triangle contains no other point in its interior.
This property is important. In the illustration below, the circumcircle associated with T1 is empty. It
does not contain a point in its interior. The circumcircle associated with T2 is empty. It does not
contain a point in its interior. This triangulation is a Delaunay triangulation.

The triangles below are different. The circumcircle associated with T1 is not empty. It contains V3 in
its interior. The circumcircle associated with T2 is not empty. It contains V1 in its interior. This
triangulation is not a Delaunay triangulation.

Delaunay triangles are said to be “well shaped” because in fulfilling the empty circumcircle property,
triangles with large internal angles are selected over ones with small internal angles. The triangles in

7 Computational Geometry

7-14



the non-Delaunay triangulation have sharp angles at vertices V2 and V4. If the edge {V2, V4} were
replaced by an edge joining V1 and V3, the minimum angle would be maximized and the triangulation
would become a Delaunay triangulation. Also, the Delaunay triangulation connects points in a
nearest-neighbor manner. These two characteristics, well-shaped triangles and the nearest-neighbor
relation, have important implications in practice and motivate the use of Delaunay triangulations in
scattered data interpolation.

While the Delaunay property is well defined, the topology of the triangulation is not unique in the
presence of degenerate point sets. In two dimensions, degeneracies arise when four or more unique
points lie on the same circle. The vertices of a square, for example, have a nonunique Delaunay
triangulation.

The properties of Delaunay triangulations extend to higher dimensions. The triangulation of a 3-D set
of points is composed of tetrahedra. The next illustration shows a simple 3-D Delaunay triangulation
made up of two tetrahedra. The circumsphere of one tetrahedron is shown to highlight the empty
circumsphere criterion.

A 3-D Delaunay triangulation produces tetrahedra that satisfy the empty circumsphere criterion.

Creating Delaunay Triangulations
MATLAB provides two ways to create Delaunay triangulations:

• The functions delaunay and delaunayn
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• The delaunayTriangulation class

The delaunay function supports the creation of 2-D and 3-D Delaunay triangulations. The
delaunayn function supports creating Delaunay triangulations in 4-D and higher.

Tip Creating Delaunay triangulations in dimensions higher than 6-D is generally not practical for
moderate to large point sets due to the exponential growth in required memory.

The delaunayTriangulation class supports creating Delaunay triangulations in 2-D and 3-D. It
provides many methods that are useful for developing triangulation-based algorithms. These class
methods are like functions, but they are restricted to work with triangulations created using
delaunayTriangulation. The delaunayTriangulation class also supports the creation of
related constructs such as the convex hull and Voronoi diagram. It also supports the creation of
constrained Delaunay triangulations.

In summary:

• The delaunay function is useful when you only require the basic triangulation data, and that data
is sufficiently complete for your application.

• The delaunayTriangulation class offers more functionality for developing triangulation-based
applications. It is useful when you require the triangulation and you want to perform any of these
operations:

• Search the triangulation for triangles or tetrahedra enclosing a query point.
• Use the triangulation to perform a nearest-neighbor point search.
• Query the triangulation's topological adjacency or geometric properties.
• Modify the triangulation to insert or remove points.
• Constrain edges in the triangulation—this is called a constrained Delaunay triangulation.
• Triangulate a polygon and optionally remove the triangles that are outside of the domain.
• Use the Delaunay triangulation to compute the convex hull or Voronoi diagram.

Using the delaunay and delaunayn functions

The delaunay and delaunayn functions take a set of points and produce a triangulation in matrix
format. Refer to “Triangulation Matrix Format” on page 7-3 for more information on this data
structure. In 2-D, the delaunay function is often used to produce a triangulation that can be used to
plot a surface defined in terms of a set of scattered data points. In this application, it’s important to
note that this approach can only be used if the surface is single-valued. For example, it could not be
used to plot a spherical surface because there are two z values corresponding to a single (x, y)
coordinate. A simple example demonstrates how the delaunay function can be used to plot a surface
representing a sampled data set.

This example shows how to use the delaunay function to create a 2-D Delaunay triangulation from
the seamount data set. A seamount is an underwater mountain. The data set consists of a set of
longitude (x) and latitude (y) locations, and corresponding seamount elevations (z) measured at those
coordinates.

Load the seamount data set and view the (x, y) data as a scatter plot.

load seamount
plot(x,y,'.','markersize',12)
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xlabel('Longitude'), ylabel('Latitude')
grid on

Construct a Delaunay triangulation from this point set and use triplot to plot the triangulation in
the existing figure.

tri = delaunay(x,y);
hold on, triplot(tri,x,y), hold off
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Add the depth data (z) from seamount to lift the vertices and create the surface. Create a new figure
and use trimesh to plot the surface in wireframe mode.

figure
hidden on
trimesh(tri,x,y,z)
xlabel('Longitude'),ylabel('Latitude'),zlabel('Depth in Feet');
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If you want to plot the surface in shaded mode, use trisurf instead of trimesh.

A 3-D Delaunay triangulation also can be created using the delaunay function. This triangulation is
composed of tetrahedra.

This example shows how to create a 3-D Delaunay triangulation of a random data set. The
triangulation is plotted using tetramesh, and the FaceAlpha option adds transparency to the plot.

rng('default')
X = rand([30 3]);
tet = delaunay(X);
faceColor  = [0.6875 0.8750 0.8984];
tetramesh(tet,X,'FaceColor', faceColor,'FaceAlpha',0.3);
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MATLAB provides the delaunayn function to support the creation of Delaunay triangulations in
dimension 4-D and higher. Two complementary functions tsearchn and dsearchn are also provided
to support spatial searching for N-D triangulations. See “Spatial Searching” on page 7-53 for more
information on triangulation-based search.

Using the delaunayTriangulation Class

The delaunayTriangulation class provides another way to create Delaunay triangulations in
MATLAB. While delaunay and delaunayTriangulation use the same underlying algorithm and
produce the same triangulation, delaunayTriangulation provides complementary methods that
are useful for developing Delaunay-based algorithms. These methods are like functions that are
packaged together with the triangulation data into a container called a class. Keeping everything
together in a class provides a more organized setup that improves ease of use. It also improves the
performance of triangulation-based searches such as point-location and nearest-neighbor.
delaunayTriangulation supports incremental editing of the Delaunay triangulation. You also can
impose edge constraints in 2-D.

“Triangulation Representations” on page 7-2 introduces the triangulation class, which supports
topological and geometric queries for 2-D and 3-D triangulations. A delaunayTriangulation is a
special kind of triangulation. This means you can perform any triangulation query on a
delaunayTriangulation in addition to the Delaunay-specific queries. In more formal MATLAB
language terms, delaunayTriangulation is a subclass of triangulation.

This example shows how to create, query, and edit a Delaunay triangulation from the seamount data
using delaunayTriangulation. The seamount data set contains (x, y) locations and corresponding
elevations (z) that define the surface of the seamount.
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Load and triangulate the (x, y) data.

load seamount
DT = delaunayTriangulation(x,y)

DT = 
  delaunayTriangulation with properties:

              Points: [294x2 double]
    ConnectivityList: [566x3 double]
         Constraints: []

The Constraints property is empty because there aren't any imposed edge constraints. The
Points property represents the coordinates of the vertices, and the ConnectivityList property
represents the triangles. Together, these two properties define the matrix data for the triangulation.

The delaunayTriangulation class is a wrapper around the matrix data, and it offers a set of
complementary methods. You access the properties in a delaunayTriangulation in the same way
you access the fields of a struct.

Access the vertex data.

DT.Points;

Access the connectivity data.

DT.ConnectivityList;

Access the first triangle in the ConnectivityList property.

DT.ConnectivityList(1,:)

ans = 1×3

   205   230   262

delaunayTriangulation provides an easy way to index into the ConnectivityList property
matrix.

Access the first triangle.

DT(1,:)

ans = 1×3

   205   230   262

Examine the first vertex of the first triangle.

DT(1,1)

ans = 205

Examine all the triangles in the triangulation.

DT(:,:);
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Indexing into the delaunayTriangulation output, DT, works like indexing into the triangulation
array output from delaunay. The difference between the two are the extra methods that you can call
on DT (for example, nearestNeighbor and pointLocation).

Use triplot to plot the delaunayTriangulation. The triplot function is not a
delaunayTriangulation method, but it accepts and can plot a delaunayTriangulation.

triplot(DT); 
axis equal
xlabel('Longitude'), ylabel('Latitude')
grid on

Alternatively, you could use triplot(DT(:,:), DT.Points(:,1), DT.Points(:,2)); to get
the same plot.

Use the delaunayTriangulation method, convexHull, to compute the convex hull and add it to
the plot. Since you already have a Delaunay triangulation, this method allows you to derive the
convex hull more efficiently than a full computation using convhull.

hold on
k = convexHull(DT);
xHull = DT.Points(k,1);
yHull = DT.Points(k,2);
plot(xHull,yHull,'r','LineWidth',2); 
hold off
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You can incrementally edit the delaunayTriangulation to add or remove points. If you need to
add points to an existing triangulation, then an incremental addition is faster than a complete
retriangulation of the augmented point set. Incremental removal of points is more efficient when the
number of points to be removed is small relative to the existing number of points.

Edit the triangulation to remove the points on the convex hull from the previous computation.

figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on

% The convex hull topology duplicates the start and end vertex.
% Remove the duplicate entry.
k(end) = [];

% Now remove the points on the convex hull.
DT.Points(k,:) = []

DT = 
  delaunayTriangulation with properties:

              Points: [274x2 double]
    ConnectivityList: [528x3 double]
         Constraints: []
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% Plot the new triangulation.
hold on
triplot(DT); 
hold off

There is one vertex that is just inside the boundary of the convex hull that was not removed. The fact
that it is interior to the hull can be seen using the Zoom-In tool in the figure. You could plot the vertex
labels to determine the index of this vertex and remove it from the triangulation. Alternatively, you
can use the nearestNeighbor method to identify the index more readily.

The point is close to location (211.6, -48.15). Use the nearestNeighbor method to find the nearest
vertex.

vertexId = nearestNeighbor(DT, 211.6, -48.15)

vertexId = 50

Now remove that vertex from the triangulation.

DT.Points(vertexId,:) = []

DT = 
  delaunayTriangulation with properties:

              Points: [273x2 double]
    ConnectivityList: [525x3 double]
         Constraints: []
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Plot the new triangulation.

figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on
hold on
triplot(DT); 
hold off

Add points to the existing triangulation. Add 4 points to form a rectangle around the triangulation.

Padditional = [210.9 -48.5; 211.6 -48.5; ...
     211.6 -47.9; 210.9 -47.9];
DT.Points(end+(1:4),:) = Padditional

DT = 
  delaunayTriangulation with properties:

              Points: [277x2 double]
    ConnectivityList: [548x3 double]
         Constraints: []

Close all existing figures.

close all
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Plot the new triangulation.

figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on
hold on
triplot(DT); 
hold off

You can edit the points in the triangulation to move them to a new location. Edit the first of the
additional point set (the vertex ID 274).

DT.Points(274,:) = [211 -48.4];

Close all existing figures.

close all

Plot the new triangulation

figure
plot(xHull,yHull,'r','LineWidth',2); 
axis equal
xlabel('Longitude'),ylabel('Latitude')
grid on
hold on
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triplot(DT); 
hold off

Use the a method of the triangulation class, vertexAttachments, to find the attached triangles.
Since the number of triangles attached to a vertex is variable, the method returns the attached
triangle IDs in a cell array. You need braces to extract the contents.

attTris = vertexAttachments(DT,274);
hold on
triplot(DT(attTris{:},:),DT.Points(:,1),DT.Points(:,2),'g')
hold off
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delaunayTriangulation also can be used to triangulate points in 3-D space. The resulting
triangulation is composed of tetrahedra.

This example shows how to use a delaunayTriangulation to create and plot the triangulation of
3-D points.

rng('default')
P = rand(30,3);
DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [30x3 double]
    ConnectivityList: [102x4 double]
         Constraints: []

faceColor  = [0.6875 0.8750 0.8984];
tetramesh(DT,'FaceColor', faceColor,'FaceAlpha',0.3);
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The tetramesh function plots both the internal and external faces of the triangulation. For large 3-D
triangulations, plotting the internal faces might be an unnecessary use of resources. A plot of the
boundary might be more appropriate. You can use the freeBoundary method to get the boundary
triangulation in matrix format. Then pass the result to trimesh or trisurf.

Constrained Delaunay Triangulation

The delaunayTriangulation class allows you to constrain edges in a 2-D triangulation. This
means you can choose a pair of points in the triangulation and constrain an edge to join those points.
You can picture this as “forcing” an edge between one or more pairs of points. The following example
shows how edge constraints can affect the triangulation.

The triangulation below is a Delaunay triangulation because it respects the empty circumcircle
criterion.
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Triangulate a set of points with an edge constraint specified between vertex V1 and V3.

Define the point set.

P = [2 4; 6 1; 9 4; 6 7];

Define a constraint, C, between V1 and V3.

C = [1 3];
DT = delaunayTriangulation(P,C);

Plot the triangulation and add annotations.

triplot(DT)

% Label the vertices.
hold on
numvx = size(P,1);
vxlabels = arrayfun(@(n) {sprintf('V%d', n)}, (1:numvx)');
Hpl = text(P(:,1)+0.2, P(:,2)+0.2, vxlabels, 'FontWeight', ...
  'bold', 'HorizontalAlignment','center', 'BackgroundColor', ...
  'none');
hold off

% Use the incenters to find the positions for placing triangle labels on the plot.
hold on
IC = incenter(DT);
numtri = size(DT,1);
trilabels = arrayfun(@(P) {sprintf('T%d', P)}, (1:numtri)');
Htl = text(IC(:,1),IC(:,2),trilabels,'FontWeight','bold', ...
'HorizontalAlignment','center','Color','blue');
hold off

% Plot the circumcircle associated with the triangle, T1.
hold on
[CC,r] = circumcenter(DT);
theta = 0:pi/50:2*pi;
xunit = r(1)*cos(theta) + CC(1,1);
yunit = r(1)*sin(theta) + CC(1,2);
plot(xunit,yunit,'g');
axis equal
hold off
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The constraint between vertices (V1, V3) was honored, however, the Delaunay criterion was
invalidated. This also invalidates the nearest-neighbor relation that is inherent in a Delaunay
triangulation. This means the nearestNeighbor search method provided by
delaunayTriangulation cannot be supported if the triangulation has constraints.

In typical applications, the triangulation might be composed of many points, and a relatively small
number of edges in the triangulation might be constrained. Such a triangulation is said to be locally
non-Delaunay, because many triangles in the triangulation might respect the Delaunay criterion, but
locally there might be some triangles that do not. In many applications, local relaxation of the empty
circumcircle property is not a concern.

Constrained triangulations are generally used to triangulate a nonconvex polygon. The constraints
give us a correspondence between the polygon edges and the triangulation edges. This relationship
enables you to extract a triangulation that represents the region. The following example shows how
to use a constrained delaunayTriangulation to triangulate a nonconvex polygon.

Define and plot a polygon.

figure()
axis([-1 17 -1 6]);
axis equal
P = [0 0; 16 0; 16 2; 2 2; 2 3; 8 3; 8 5; 0 5];
patch(P(:,1),P(:,2),'-r','LineWidth',2,'FaceColor',...
     'none','EdgeColor','r');
 
% Label the points.
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hold on
numvx = size(P,1);
vxlabels = arrayfun(@(n) {sprintf('P%d', n)}, (1:numvx)');
Hpl = text(P(:,1)+0.2, P(:,2)+0.2, vxlabels, 'FontWeight', ...
  'bold', 'HorizontalAlignment','center', 'BackgroundColor', ...
  'none');
hold off

Create and plot the triangulation together with the polygon boundary.

figure()
subplot(2,1,1);
axis([-1 17 -1 6]);
axis equal

P = [0 0; 16 0; 16 2; 2 2; 2 3; 8 3; 8 5; 0 5];
DT = delaunayTriangulation(P);
triplot(DT)
hold on; 
patch(P(:,1),P(:,2),'-r','LineWidth',2,'FaceColor',...
     'none','EdgeColor','r');
hold off

% Plot the standalone triangulation in a subplot.
subplot(2,1,2);
axis([-1 17 -1 6]);
axis equal
triplot(DT)
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This triangulation cannot be used to represent the domain of the polygon because some triangles cut
across the boundary. You need to impose a constraint on the edges that are cut by triangulation
edges. Since all edges have to be respected, you need to constrain all edges. The steps below show
how to constrain all the edges.

Enter the constrained edge definition. Observe from the annotated figure where you need constraints
(between (V1, V2), (V2, V3), and so on).

C = [1 2; 2 3; 3 4; 4 5; 5 6; 6 7; 7 8; 8 1];

In general, if you have N points in a sequence that define a polygonal boundary, the constraints can be
expressed as C = [(1:(N-1))' (2:N)'; N 1];.

Specify the constraints when you create the delaunayTriangulation.

DT = delaunayTriangulation(P,C);

Alternatively, you can impose constraints on an existing triangulation by setting the Constraints
property: DT.Constraints = C;.

Plot the triangulation and polygon.

figure('Color','white')
subplot(2,1,1);
axis([-1 17 -1 6]);
axis equal
triplot(DT)
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hold on; 
patch(P(:,1),P(:,2),'-r','LineWidth',2, ...
     'FaceColor','none','EdgeColor','r'); 
hold off

% Plot the standalone triangulation in a subplot.
subplot(2,1,2);
axis([-1 17 -1 6]);
axis equal
triplot(DT)

The plot shows that the edges of the triangulation respect the boundary of the polygon. However, the
triangulation fills the concavities. What is needed is a triangulation that represents the polygonal
domain. You can extract the triangles within the polygon using the delaunayTriangulation
method, isInterior. This method returns a logical array whose true and false values that
indicate whether the triangles are inside a bounded geometric domain. The analysis is based on the
Jordan Curve theorem, and the boundaries are defined by the edge constraints. The ith triangle in the
triangulation is considered to be inside the domain if the ith logical flag is true, otherwise it is
outside.

Now use the isInterior method to compute and plot the set of domain triangles.

% Plot the constrained edges in red.
figure('Color','white')
subplot(2,1,1);
plot(P(C'),P(C'+size(P,1)),'-r','LineWidth', 2);
axis([-1 17 -1 6]);
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% Compute the in/out status.
IO = isInterior(DT);
subplot(2,1,2);
hold on;
axis([-1 17 -1 6]);

% Use triplot to plot the triangles that are inside.
% Uses logical indexing and dt(i,j) shorthand
% format to access the triangulation.
triplot(DT(IO, :),DT.Points(:,1), DT.Points(:,2),'LineWidth', 2)
hold off;

Triangulation of Point Sets Containing Duplicate Locations
The Delaunay algorithms in MATLAB construct a triangulation from a unique set of points. If the
points passed to the triangulation function, or class, are not unique, the duplicate locations are
detected and the duplicate point is ignored. This produces a triangulation that does not reference
some points in the original input, namely the duplicate points. When you work with the delaunay
and delaunayn functions, the presence of duplicates may be of little consequence. However, since
many of the queries provided by the delaunayTriangulation class are index based, it is important
to understand that delaunayTriangulation triangulates and works with the unique data set.
Therefore, indexing based on the unique point set is the convention. This data is maintained by the
Points property of delaunayTriangulation.
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The following example illustrates the importance of referencing the unique data set stored within the
Points property when working with delaunayTriangulation:

rng('default')
P = rand([25 2]);
P(18,:) = P(8,:)
P(16,:) = P(6,:)
P(12,:) = P(2,:)

DT = delaunayTriangulation(P)

When the triangulation is created, MATLAB issues a warning. The Points property shows that the
duplicate points have been removed from the data.

DT = 

  delaunayTriangulation with properties:

              Points: [22x2 double]
    ConnectivityList: [31x3 double]
         Constraints: []

If for example, the Delaunay triangulation is used to compute the convex hull, the indices of the
points on the hull are indices with respect to the unique point set, DT.Points. Therefore, use the
following code to compute and plot the convex hull:

K = DT.convexHull();
plot(DT.Points(:,1),DT.Points(:,2),'.');
hold on
plot(DT.Points(K,1),DT.Points(K,2),'-r');

If the original data set containing the duplicates were used in conjunction with the indices provided
by delaunayTriangulation, then the result would be incorrect. The delaunayTriangulation
works with indices that are based on the unique data set DT.Points. For example, the following
would produce an incorrect plot, because K is indexed with respect to DT.Points and not P:

K = DT.convexHull();
plot(P(:,1),P(:,2),'.');
hold on
plot(P(K,1),P(K,2),'-r');

It’s often more convenient to create a unique data set by removing duplicates prior to creating the
delaunayTriangulation. Doing this eliminates the potential for confusion. This can be
accomplished using the unique function as follows:

rng('default')
P = rand([25 2]);
P(18,:) = P(8,:)
P(16,:) = P(6,:)
P(12,:) = P(2,:)

[~, I, ~] = unique(P,'first','rows');
I = sort(I);
P = P(I,:);
DT = delaunayTriangulation(P)  % The point set is unique
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See Also

More About
• “Spatial Searching” on page 7-53
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Creating and Editing Delaunay Triangulations
This example shows how to create, edit, and query Delaunay triangulations using the
delaunayTriangulation class. The Delaunay triangulation is the most widely used triangulation in
scientific computing. The properties associated with the triangulation provide a basis for solving a
variety of geometric problems. Construction of constrained Delaunay triangulations is also shown,
together with an applications covering medial axis computation and mesh morphing.

Example One: Create and Plot a 2D Delaunay Triangulation

This example shows you how to compute a 2D Delaunay triangulation and how to plot the
triangulation together with the vertex and triangle labels.

x = rand(10,1);
y = rand(10,1);
dt = delaunayTriangulation(x,y)

dt = 
  delaunayTriangulation with properties:

              Points: [10x2 double]
    ConnectivityList: [11x3 double]
         Constraints: []

triplot(dt);
%
% Display the Vertex and Triangle labels on the plot
hold on
vxlabels = arrayfun(@(n) {sprintf('P%d', n)}, (1:10)');
Hpl = text(x, y, vxlabels, 'FontWeight', 'bold', 'HorizontalAlignment',...
   'center', 'BackgroundColor', 'none');
ic = incenter(dt);
numtri = size(dt,1);
trilabels = arrayfun(@(x) {sprintf('T%d', x)}, (1:numtri)');
Htl = text(ic(:,1), ic(:,2), trilabels, 'FontWeight', 'bold', ...
   'HorizontalAlignment', 'center', 'Color', 'blue');
hold off
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Example Two: Create and Plot a 3D Delaunay Triangulation

This example shows you how to compute a 3D Delaunay triangulation and how to plot the
triangulation.

X = rand(10,3)

X = 10×3

    0.6557    0.7060    0.4387
    0.0357    0.0318    0.3816
    0.8491    0.2769    0.7655
    0.9340    0.0462    0.7952
    0.6787    0.0971    0.1869
    0.7577    0.8235    0.4898
    0.7431    0.6948    0.4456
    0.3922    0.3171    0.6463
    0.6555    0.9502    0.7094
    0.1712    0.0344    0.7547

dt = delaunayTriangulation(X)

dt = 
  delaunayTriangulation with properties:

              Points: [10x3 double]
    ConnectivityList: [22x4 double]
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         Constraints: []

tetramesh(dt, 'FaceColor', 'cyan');

% To display large tetrahedral meshes use the convexHull method to
% compute the boundary triangulation and plot it using trisurf.
% For example;
% triboundary = convexHull(dt)
% trisurf(triboundary, X(:,1), X(:,2), X(:,3), 'FaceColor', 'cyan')

Example Three: Access the Triangulation Data Structure

There are two ways to access the triangulation data structure. One way is via the Triangulation
property, the other way is using indexing.

Create a 2D Delaunay triangulation from 10 random points.

X = rand(10,2)

X = 10×2

    0.2760    0.7513
    0.6797    0.2551
    0.6551    0.5060
    0.1626    0.6991
    0.1190    0.8909
    0.4984    0.9593
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    0.9597    0.5472
    0.3404    0.1386
    0.5853    0.1493
    0.2238    0.2575

dt = delaunayTriangulation(X)

dt = 
  delaunayTriangulation with properties:

              Points: [10x2 double]
    ConnectivityList: [12x3 double]
         Constraints: []

% The triangulation datastructure is;
dt.ConnectivityList

ans = 12×3

     4    10     1
     3     8     9
    10     4     5
     4     1     5
     1     6     5
     3    10     8
     1     3     6
     2     9     7
     6     3     7
     1    10     3
      ⋮

% Indexing is a shorthand way to query the triangulation. The format is
% dt(i, j) where j is the j'th vertex of the i'th triangle, standard
% indexing rules apply.
% The triangulation datastructure is
dt(:,:)

ans = 12×3

     4    10     1
     3     8     9
    10     4     5
     4     1     5
     1     6     5
     3    10     8
     1     3     6
     2     9     7
     6     3     7
     1    10     3
      ⋮

The second triangle is;

dt(2,:)
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ans = 1×3

     3     8     9

The third vertex of the second triangle is;

dt(2,3)

ans = 9

The first three triangles;

dt(1:3,:)

ans = 3×3

     4    10     1
     3     8     9
    10     4     5

Example Four: Edit a Delaunay Triangulation to Insert or Remove Points

This example shows you how to use index-based subscripting to insert or remove points. It is more
efficient to edit a delaunayTriangulation to make minor modifications as opposed to recreating a new
delaunayTriangulation from scratch, this is especially true if the dataset is large.

% Construct a Delaunay triangulation from
% 10 random points within a unit square
x = rand(10,1);
y = rand(10,1);
dt = delaunayTriangulation(x,y)

dt = 
  delaunayTriangulation with properties:

              Points: [10x2 double]
    ConnectivityList: [12x3 double]
         Constraints: []

% Insert 5 additional random points
dt.Points(end+(1:5),:) = rand(5,2)

dt = 
  delaunayTriangulation with properties:

              Points: [15x2 double]
    ConnectivityList: [21x3 double]
         Constraints: []

Replace the fifth point

dt.Points(5,:) = [0, 0]

dt = 
  delaunayTriangulation with properties:
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              Points: [15x2 double]
    ConnectivityList: [21x3 double]
         Constraints: []

Remove the fourth point

dt.Points(4,:) = []

dt = 
  delaunayTriangulation with properties:

              Points: [14x2 double]
    ConnectivityList: [19x3 double]
         Constraints: []

Example Five: Create a Constrained Delaunay Triangulation

This example shows you how to create a simple constrained Delaunay triangulation and illustrates the
effect of the constraints.

X = [0 0; 16 0; 16 2; 2 2; 2 3; 8 3; 8 5; 0 5];
C = [1 2; 2 3; 3 4; 4 5; 5 6; 6 7; 7 8; 8 1];
dt = delaunayTriangulation(X, C);
subplot(2,1,1);
triplot(dt);
axis([-1 17 -1 6]);
xlabel('Constrained Delaunay triangulation', 'fontweight','b');
% Plot the constrained edges in red
hold on;
plot(X(C'),X(C'+size(X,1)),'-r', 'LineWidth', 2);
hold off;

% Now delete the constraints and plot the unconstrained Delaunay
dt.Constraints = [];
subplot(2,1,2);
triplot(dt);
axis([-1 17 -1 6]);
xlabel('Unconstrained Delaunay triangulation', 'fontweight','b');
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Example Six: Create a Constrained Delaunay Triangulation of a Geographical Map

Load a map of the perimeter of the conterminous United States. Construct a constrained Delaunay
triangulation representing the polygon. This triangulation spans a domain that is bounded by the
convex hull of the set of points. Filter out the triangles that are within the domain of the polygon and
plot them. Note: The dataset contains duplicate datapoints; that is two or more datapoints have the
same location. The duplicate points are rejected and the delaunayTriangulation reformats the
constraints accordingly.

clf
load usapolygon
% Define an edge constraint between two successive
% points that make up the polygonal boundary.
nump = numel(uslon);
C = [(1:(nump-1))' (2:nump)'; nump 1];
dt = delaunayTriangulation(uslon, uslat, C);

Warning: Duplicate data points have been detected and removed.
 The Triangulation indices and constraints are defined with respect to the unique set of points in delaunayTriangulation.

Warning: Intersecting edge constraints have been split, this may have added new points into the triangulation.

io = dt.isInterior();
patch('faces',dt(io,:), 'vertices', dt.Points, 'FaceColor','r');
axis equal;
axis([-130 -60 20 55]);
xlabel('Constrained Delaunay Triangulation of usapolygon', 'fontweight','b');
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Example Seven: Curve Reconstruction from a Point Cloud

This example highlights the use of a Delaunay triangulation to reconstruct a polygonal boundary from
a cloud of points. The reconstruction is based on the elegant Crust algorithm.

Reference: N. Amenta, M. Bern, and D. Eppstein. The crust and the beta-skeleton: combinatorial
curve reconstruction. Graphical Models and Image Processing, 60:125-135, 1998.

% Create a set of points representing the point cloud
numpts = 192;
t = linspace( -pi, pi, numpts+1 )';
t(end) = [];
r = 0.1 + 5*sqrt( cos( 6*t ).^2 + (0.7).^2 );
x = r.*cos(t);
y = r.*sin(t);
ri = randperm(numpts);
x = x(ri);
y = y(ri);

% Construct a Delaunay Triangulation of the point set.
dt = delaunayTriangulation(x,y);
tri = dt(:,:);

% Insert the location of the Voronoi vertices into the existing
% triangulation
V = dt.voronoiDiagram();
% Remove the infinite vertex
V(1,:) = [];
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numv = size(V,1);
dt.Points(end+(1:numv),:) = V;

Warning: Duplicate data points have been detected and removed.
 The Triangulation indices are defined with respect to the unique set of points in delaunayTriangulation.

% The Delaunay edges that connect pairs of sample points represent the
% boundary.
delEdges = dt.edges();
validx = delEdges(:,1) <= numpts;
validy = delEdges(:,2) <= numpts;
boundaryEdges = delEdges((validx & validy), :)';
xb = x(boundaryEdges);
yb = y(boundaryEdges);
clf;
triplot(tri,x,y);
axis equal;
hold on;
plot(x,y,'*r');
plot(xb,yb, '-r');
xlabel('Curve reconstruction from a point cloud', 'fontweight','b');
hold off;

Example Eight: Compute an Approximate Medial Axis of a Polygonal Domain

This example shows how to create an approximate Medial Axis of a polygonal domain using a
constrained Delaunay triangulation. The Medial Axis of a polygon is defined by the locus of the center
of a maximal disk within the polygon interior.
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% Construct a constrained Delaunay triangulation of a sample of points
% on the domain boundary.
load trimesh2d
dt = delaunayTriangulation(x,y,Constraints);
inside = dt.isInterior();

% Construct a triangulation to represent the domain triangles.
tr = triangulation(dt(inside, :), dt.Points);

% Construct a set of edges that join the circumcenters of neighboring
% triangles; the additional logic constructs a unique set of such edges.
numt = size(tr,1);
T = (1:numt)';
neigh = tr.neighbors();
cc = tr.circumcenter();
xcc = cc(:,1);
ycc = cc(:,2);
idx1 = T < neigh(:,1);
idx2 = T < neigh(:,2);
idx3 = T < neigh(:,3);
neigh = [T(idx1) neigh(idx1,1); T(idx2) neigh(idx2,2); T(idx3) neigh(idx3,3)]';

% Plot the domain triangles in green, the domain boundary in blue and the
% medial axis in red.
clf;
triplot(tr, 'g');
hold on;
plot(xcc(neigh), ycc(neigh), '-r', 'LineWidth', 1.5);
axis([-10 310 -10 310]);
axis equal;
plot(x(Constraints'),y(Constraints'), '-b', 'LineWidth', 1.5);
xlabel('Medial Axis of a Polygonal Domain', 'fontweight','b');
hold off;
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Example Nine: Morph a 2D Mesh to a Modified Boundary

This example shows how to morph a mesh of a 2D domain to accommodate a modification to the
domain boundary.

Step 1: Load the data. The mesh to be morphed is defined by trife, xfe, yfe, which is a triangulation
in face-vertex format.

load trimesh2d
clf;
triplot(trife,xfe,yfe);
axis equal;
axis([-10 310 -10 310]);
axis equal;
xlabel('Initial Mesh', 'fontweight','b');
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Step 2: Construct a background triangulation - a Constrained Delaunay triangulation of the set of
points representing the mesh boundary. For each vertex of the mesh, compute a descriptor that
defines it's location with respect to the background triangulation. The descriptor is the enclosing
triangle together with the barycentric coordinates with respect to that triangle.

dt = delaunayTriangulation(x,y,Constraints);
clf;
triplot(dt);
axis equal;
axis([-10 310 -10 310]);
axis equal;
xlabel('Background Triangulation', 'fontweight','b');
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descriptors.tri = pointLocation(dt,xfe, yfe);
descriptors.baryCoords = cartesianToBarycentric(dt,descriptors.tri, [xfe yfe]);

Step 3: Edit the background triangulation to incorporate the desired modification to the domain
boundary.

cc1 = [210 90];
circ1 = (143:180)';
x(circ1) = (x(circ1)-cc1(1))*0.6 + cc1(1);
y(circ1) = (y(circ1)-cc1(2))*0.6 + cc1(2);
tr = triangulation(dt(:,:),x,y);
clf;
triplot(tr);
axis([-10 310 -10 310]);
axis equal;
xlabel('Edited Background Triangulation - Hole Size Reduced', 'fontweight','b');
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Step 4: Convert the descriptors back to Cartesian coordinates using the deformed background
triangulation as a basis for evaluation.

Xnew = barycentricToCartesian(tr,descriptors.tri, descriptors.baryCoords);
tr = triangulation(trife, Xnew);
clf;
triplot(tr);
axis([-10 310 -10 310]);
axis equal;
xlabel('Morphed Mesh', 'fontweight','b');
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Spatial Searching
In this section...
“Introduction” on page 7-53
“Nearest-Neighbor Search” on page 7-53
“Point-Location Search” on page 7-56

Introduction
MATLAB provides the necessary functions for performing a spatial search using either a Delaunay
triangulation or a general triangulation. The search queries that MATLAB supports are:

• Nearest-neighbor search (sometimes called closest-point search or proximity search).
• Point-location search (sometimes called point-in-triangle search or point-in-simplex search, where

a simplex is a triangle, tetrahedron or higher dimensional equivalent).

Given a set of points X and a query point q in Euclidean space, the nearest-neighbor search locates a
point p in X that is closer to q than to any other point in X. Given a triangulation of X, the point-
location search locates the triangle or tetrahedron that contains the query point q. Since these
methods work for both Delaunay as well as general triangulations, you can use them even if a
modification of the points violates the Delaunay criterion. You also can search a general triangulation
represented in matrix format.

While MATLAB supports these search schemes in N dimensions, exact spatial searches usually
become prohibitive as the number of dimensions extends beyond 3-D. You should consider
approximate alternatives for large problems in up to 10 dimensions.

Nearest-Neighbor Search
There are a few ways to compute nearest-neighbors in MATLAB, depending on the dimensionality of
the problem:

• For 2-D and 3-D searches, use the nearestNeighbor method provided by the triangulation
class and inherited by the delaunayTriangulation class.

• For 4-D and higher, use the delaunayn function to construct the triangulation and the
complementary dsearchn function to perform the search. While these N-D functions support 2-D
and 3-D, they are not as general and efficient as the triangulation search methods.

This example shows how to perform a nearest-neighbor search in 2-D with
delaunayTriangulation.

Begin by creating a random set of 15 points.

X = [3.5 8.2; 6.8 8.3; 1.3 6.5; 3.5 6.3; 5.8 6.2; 8.3 6.5;...
    1 4; 2.7 4.3; 5 4.5; 7 3.5; 8.7 4.2; 1.5 2.1; 4.1 1.1; ...
    7 1.5; 8.5 2.75];

Plot the points and add annotations to show the ID labels.

plot(X(:,1),X(:,2),'ob')
hold on
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vxlabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:15)');
Hpl = text(X(:,1)+0.2, X(:,2)+0.2, vxlabels, 'FontWeight', ...
  'bold', 'HorizontalAlignment','center', 'BackgroundColor', ...
  'none');
hold off

Create a Delaunay triangulation from the points.

dt = delaunayTriangulation(X);

Create some query points and for each query point find the index of its corresponding nearest
neighbor in X using the nearestNeighbor method.

numq = 10;
rng(0,'twister');
q = 2+rand(numq,2)*6;
xi = nearestNeighbor(dt, q);

Add the query points to the plot and add line segments joining the query points to their nearest
neighbors.

xnn = X(xi,:);

hold on
plot(q(:,1),q(:,2),'or');
plot([xnn(:,1) q(:,1)]',[xnn(:,2) q(:,2)]','-r');

vxlabels = arrayfun(@(n) {sprintf('q%d', n)}, (1:numq)');
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Hpl = text(q(:,1)+0.2, q(:,2)+0.2, vxlabels, 'FontWeight', ...
     'bold', 'HorizontalAlignment','center', ...
     'BackgroundColor','none');

hold off

Performing a nearest-neighbor search in 3-D is a direct extension of the 2-D example based on
delaunayTriangulation.

For 4-D and higher, use the delaunayn and dsearchn functions as illustrated in the following
example:

Create a random sample of points in 4-D and triangulate the points using delaunayn:

X = 20*rand(50,4) -10;
tri = delaunayn(X);

Create some query points and for each query point find the index of its corresponding nearest-
neighbor in X using the dsearchn function:

q = rand(5,4);
xi = dsearchn(X,tri, q)

The nearestNeighbor method and the dsearchn function allow the Euclidean distance between
the query point and its nearest-neighbor to be returned as an optional argument. In the 4-D example,
you can compute the distances, dnn, as follows:

[xi,dnn] = dsearchn(X,tri, q)
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Point-Location Search
A point-location search is a triangulation search algorithm that locates the simplex (triangle,
tetrahedron, and so on) enclosing a query point. As in the case of the nearest-neighbor search, there
are a few approaches to performing a point-location search in MATLAB, depending on the
dimensionality of the problem:

• For 2-D and 3-D, use the class-based approach with the pointLocation method provided by the
triangulation class and inherited by the delaunayTriangulation class.

• For 4-D and higher, use the delaunayn function to construct the triangulation and the
complementary tsearchn function to perform the point-location search. Although supporting 2-D
and 3-D, these N-D functions are not as general and efficient as the triangulation search methods.

This example shows how to use the delaunayTriangulation class to perform a point location
search in 2-D.

Begin with a set of 2-D points.

X = [3.5 8.2; 6.8 8.3; 1.3 6.5; 3.5 6.3; 5.8 6.2; ...
     8.3 6.5; 1 4; 2.7 4.3; 5 4.5; 7 3.5; 8.7 4.2; ...
     1.5 2.1; 4.1 1.1; 7 1.5; 8.5 2.75];

Create the triangulation and plot it showing the triangle ID labels at the incenters of the triangles.

 dt = delaunayTriangulation(X);
triplot(dt);

hold on
ic = incenter(dt);
numtri = size(dt,1);
trilabels = arrayfun(@(x) {sprintf('T%d', x)}, (1:numtri)');
Htl = text(ic(:,1), ic(:,2), trilabels, 'FontWeight', ...
      'bold', 'HorizontalAlignment', 'center', 'Color', ...
      'blue');
hold off
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Now create some query points and add them to the plot. Then find the index of the corresponding
enclosing triangles using the pointLocation method.

q = [5.9344    6.2363;
    2.2143    2.1910;
    7.0948    3.6615;
    7.6040    2.2770;
    6.0724    2.5828;
    6.5464    6.9407;
    6.4588    6.1690;
    4.3534    3.9026;
    5.9329    7.7013;
    3.0271    2.2067];

hold on; 
plot(q(:,1),q(:,2),'*r'); 
vxlabels = arrayfun(@(n) {sprintf('q%d', n)}, (1:10)');
Hpl = text(q(:,1)+0.2, q(:,2)+0.2, vxlabels, 'FontWeight', ...
      'bold', 'HorizontalAlignment','center', ... 
      'BackgroundColor', 'none');
hold off
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ti = pointLocation(dt,q);

Performing a point-location search in 3-D is a direct extension of performing a point-location search
in 2-D with delaunayTriangulation.

For 4-D and higher, use the delaunayn and tsearchn functions as illustrated in the following
example:

Create a random sample of points in 4-D and triangulate them using delaunayn:

X = 20*rand(50,4) -10;
tri = delaunayn(X);

Create some query points and find the index of the corresponding enclosing simplices using the
tsearchn function:

q = rand(5,4);
ti = tsearchn(X,tri,q)

The pointLocation method and the tsearchn function allow the corresponding barycentric
coordinates to be returned as an optional argument. In the 4-D example, you can compute the
barycentric coordinates as follows:

[ti,bc] = tsearchn(X,tri,q)

7 Computational Geometry

7-58



The barycentric coordinates are useful for performing linear interpolation. These coordinates provide
you with weights that you can use to scale the values at each vertex of the enclosing simplex. See
“Interpolating Scattered Data” on page 8-38 for further details.

See Also
delaunay | delaunayTriangulation | delaunayn | dsearchn | nearestNeighbor |
pointLocation | triangulation | triangulation | tsearchn

Related Examples
• “Working with Delaunay Triangulations” on page 7-14
• “Triangulation Representations” on page 7-2
• “Interpolating Scattered Data” on page 8-38
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Voronoi Diagrams
In this section...
“Plot 2-D Voronoi Diagram and Delaunay Triangulation” on page 7-60
“Computing the Voronoi Diagram” on page 7-63

The Voronoi diagram of a discrete set of points X decomposes the space around each point X(i) into a
region of influence R{i}. This decomposition has the property that an arbitrary point P within the
region R{i} is closer to point i than any other point. The region of influence is called a Voronoi
region and the collection of all the Voronoi regions is the Voronoi diagram.

The Voronoi diagram is an N-D geometric construct, but most practical applications are in 2-D and 3-
D space. The properties of the Voronoi diagram are best understood using an example.

Plot 2-D Voronoi Diagram and Delaunay Triangulation
This example shows the Voronoi diagram and the Delaunay triangulation on the same 2-D plot.

Use the 2-D voronoi function to plot the voronoi diagram for a set of points.

figure()
X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; ...
      0.8 1.2; 3.3 1.5; -4.0 -1.0;-2.3 -0.7; ...
      0 -0.5; 2.0 -1.5; 3.7 -0.8; -3.5 -2.9; ...
     -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];
 
voronoi(X(:,1),X(:,2))

% Assign labels to the points.
nump = size(X,1);
plabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:nump)');
hold on
Hpl = text(X(:,1), X(:,2), plabels, 'FontWeight', ...
      'bold', 'HorizontalAlignment','center', ...
      'BackgroundColor', 'none');

% Add a query point, P, at (0, -1.5).
P = [0 -1];
plot(P(1),P(2), '*r');
text(P(1), P(2), 'P', 'FontWeight', 'bold', ...
     'HorizontalAlignment','center', ...
     'BackgroundColor', 'none');
hold off
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Observe that P is closer to X9 than to any other point in X, which is true for any point P within the
region that bounds X9.

The Voronoi diagram of a set of points X is closely related to the Delaunay triangulation of X. To see
this relationship, construct a Delaunay triangulation of the point set X and superimpose the
triangulation plot on the Voronoi diagram.

dt = delaunayTriangulation(X);
hold on
triplot(dt,'-r');
hold off
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From the plot you can see that the Voronoi region associated with the point X9 is defined by the
perpendicular bisectors of the Delaunay edges attached to X9. Also, the vertices of the Voronoi edges
are located at the circumcenters of the Delaunay triangles. You can illustrate these associations by
plotting the circumcenter of triangle {|X9|,|X4|,|X8|}.

To find the index of this triangle, query the triangulation. The triangle contains the location (-1, 0).

tidx = pointLocation(dt,-1,0);

Now, find the circumcenter of this triangle and plot it in green.

cc = circumcenter(dt,tidx);
hold on
plot(cc(1),cc(2),'*g');
hold off
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The Delaunay triangulation and Voronoi diagram are geometric duals of each other. You can compute
the Voronoi diagram from the Delaunay triangulation and vice versa.

Observe that the Voronoi regions associated with points on the convex hull are unbounded (for
example, the Voronoi region associated with X13). The edges in this region "end" at infinity. The
Voronoi edges that bisect Delaunay edges (X13, X12) and (X13, X14) extend to infinity. While the
Voronoi diagram provides a nearest-neighbor decomposition of the space around each point in the
set, it does not directly support nearest-neighbor queries. However, the geometric constructions used
to compute the Voronoi diagram are also used to perform nearest-neighbor searches.

Computing the Voronoi Diagram
This example shows how to compute a 2–D and 3–D Voronoi diagram.

MATLAB provides functions to plot the Voronoi diagram in 2-D and to compute the topology of the
Voronoi diagram in N-D. In practice, Voronoi computation is not practical in dimensions beyond 6-D
for moderate to large data sets, due to the exponential growth in required memory.

The voronoi plot function plots the Voronoi diagram for a set of points in 2-D space. In MATLAB
there are two ways to compute the topology of the Voronoi diagram of a point set:

• Using the function voronoin
• Using the delaunayTriangulation method, voronoiDiagram.

 Voronoi Diagrams

7-63



The voronoin function supports the computation of the Voronoi topology for discrete points in N-D
(N ≥ 2). The voronoiDiagram method supports computation of the Voronoi topology for discrete
points 2-D or 3-D.

The voronoiDiagram method is recommended for 2-D or 3-D topology computations as it is more
robust and gives better performance for large data sets. This method supports incremental insertion
and removal of points and complementary queries, such as nearest-neighbor point search.

The voronoin function and the voronoiDiagram method represent the topology of the Voronoi
diagram using a matrix format. See “Triangulation Matrix Format” on page 7-3 for further details on
this data structure.

Given a set of points, X, obtain the topology of the Voronoi diagram as follows:

• Using the voronoin function

[V,R] = voronoin(X)

• Using the voronoiDiagram method

dt = delaunayTriangulation(X);

[V,R] = voronoiDiagram(dt)

V is a matrix representing the coordinates of the Voronoi vertices (the vertices are the end points of
the Voronoi edges). By convention the first vertex in V is the infinite vertex. R is a vector cell array
length size(X,1), representing the Voronoi region associated with each point. Hence, the Voronoi
region associated with the point X(i) is R{i}.

Define and plot the voronoi diagram for a set of points

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; 0.8 1.2; ...
      3.3 1.5; -4.0 -1.0; -2.3 -0.7; 0 -0.5; 2.0 -1.5; ...
      3.7 -0.8; -3.5 -2.9; -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];
[VX,VY] = voronoi(X(:,1),X(:,2));
h = plot(VX,VY,'-b',X(:,1),X(:,2),'.r');
xlim([-4,4])
ylim([-4,4])

% Assign labels to the points X.
nump = size(X,1);
plabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:nump)');
hold on
Hpl = text(X(:,1), X(:,2)+0.2, plabels, 'color', 'r', ...
      'FontWeight', 'bold', 'HorizontalAlignment',...
      'center', 'BackgroundColor', 'none');
  
% Compute the Voronoi diagram.
dt = delaunayTriangulation(X);
[V,R] = voronoiDiagram(dt);

% Assign labels to the Voronoi vertices V.
% By convention the first vertex is at infinity.
numv = size(V,1);
vlabels = arrayfun(@(n) {sprintf('V%d', n)}, (2:numv)');
hold on
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Hpl = text(V(2:end,1), V(2:end,2)+.2, vlabels, ...
      'FontWeight', 'bold', 'HorizontalAlignment',...
      'center', 'BackgroundColor', 'none');
hold off

R{9} gives the indices of the Voronoi vertices associated with the point site X9.

R{9}

ans = 1×5

     5     7    17    12     9

The indices of the Voronoi vertices are the indices with respect to the V array.

Similarly, R{4} gives the indices of the Voronoi vertices associated with the point site X4.

R{4}

ans = 1×5

     5     9    11     8     6

In 3-D a Voronoi region is a convex polyhedron, the syntax for creating the Voronoi diagram is similar.
However the geometry of the Voronoi region is more complex. The following example illustrates the
creation of a 3-D Voronoi diagram and the plotting of a single region.
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Create a sample of 25 points in 3-D space and compute the topology of the Voronoi diagram for this
point set.

rng('default')
X = -3 + 6.*rand([25 3]);
dt = delaunayTriangulation(X);

Compute the topology of the Voronoi diagram.

[V,R] = voronoiDiagram(dt);

Find the point closest to the origin and plot the Voronoi region associated with this point.

tid = nearestNeighbor(dt,0,0,0);
XR10 = V(R{tid},:);
K = convhull(XR10);
defaultFaceColor  = [0.6875 0.8750 0.8984];
trisurf(K, XR10(:,1) ,XR10(:,2) ,XR10(:,3) , ...
        'FaceColor', defaultFaceColor, 'FaceAlpha',0.8)
title('3-D Voronoi Region')

See Also

More About
• “Spatial Searching” on page 7-53
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Types of Region Boundaries

In this section...
“Convex Hulls vs. Nonconvex Polygons” on page 7-67
“Alpha Shapes” on page 7-69

Convex Hulls vs. Nonconvex Polygons
The convex hull of a set of points in N-D space is the smallest convex region enclosing all points in the
set. If you think of a 2-D set of points as pegs in a peg board, the convex hull of that set would be
formed by taking an elastic band and using it to enclose all the pegs.

rng('default')
x = rand(20,1);
y = rand(20,1);
plot(x,y,'r.','MarkerSize',10)
hold on
k = convhull(x,y);
plot(x(k),y(k))
title('The Convex Hull of a Set of Points')
hold off

A convex polygon is a polygon that does not have concave vertices, for example:
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x = rand(20,1);
y = rand(20,1);
k = convhull(x,y);
plot(x(k),y(k))
title('Convex Polygon')

You can also create a boundary of a point set that is nonconvex. If you "vacuum pack" the convex hull
from above, you can enclose all of the points in a nonconvex polygon with concave vertices:

k = boundary(x,y,0.9);
plot(x(k),y(k))
title('Nonconvex Polygon')
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The convex hull has numerous applications. You can compute the upper bound on the area bounded
by a discrete point set in the plane from the convex hull of the set. The convex hull simplifies the
representation of more complex polygons or polyhedra. For instance, to determine whether two
nonconvex bodies intersect, you could apply a series of fast rejection steps to avoid the penalty of a
full intersection analysis:

• Check if the axis-aligned bounding boxes around each body intersect.
• If the bounding boxes intersect, you can compute the convex hull of each body and check

intersection of the hulls.

If the convex hulls did not intersect, this would avoid the expense of a more comprehensive
intersection test.

While convex hulls and nonconvex polygons are convenient ways to represent relatively simple
boundaries, they are in fact specific instances of a more general geometric construct called the alpha
shape.

Alpha Shapes
The alpha shape of a set of points is a generalization of the convex hull and a subgraph of the
Delaunay triangulation. That is, the convex hull is just one type of alpha shape, and the full family of
alpha shapes can be derived from the Delaunay triangulation of a given point set.

rng(4)
x = rand(20,1);
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y = rand(20,1);
plot(x,y,'r.','MarkerSize',20)
hold on
shp = alphaShape(x,y,100);
plot(shp)
title('Convex Alpha Shape')
hold off

Unlike the convex hull, alpha shapes have a parameter that controls the level of detail, or how tightly
the boundary fits around the point set. The parameter is called alpha or the alpha radius. Varying the
alpha radius from 0 to Inf produces a set of different alpha shapes unique for that point set.

plot(x,y,'r.','MarkerSize',20)
hold on
shp = alphaShape(x,y,.5);
plot(shp)
title('Nonconvex Alpha Shape')
hold off
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Varying the alpha radius can sometimes result in an alpha shape with multiple regions, which might
or might not contain holes. However, the alphaShape function in MATLAB® always returns
regularized alpha shapes, which prevents isolated or dangling points, edges, or faces.

plot(x,y,'r.','MarkerSize',20)
hold on
shp = alphaShape(x,y);
plot(shp)
title('Alpha Shape with Multiple Regions')
hold off
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See Also
alphaShape | convhull

More About
• “Using the delaunayTriangulation Class” on page 7-20
• “Triangulation Matrix Format” on page 7-3
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Computing the Convex Hull
In this section...
“Computing the Convex Hull Using convhull and convhulln” on page 7-73
“Convex Hull Computation Using the delaunayTriangulation Class” on page 7-76
“Convex Hull Computation Using alphaShape” on page 7-77

MATLAB provides several ways to compute the convex hull:

• Using the MATLAB functions convhull and convhulln
• Using the convexHull method provided by the delaunayTriangulation class
• Using the alphaShape function with an alpha radius of Inf.

The convhull function supports the computation of convex hulls in 2-D and 3-D. The convhulln
function supports the computation of convex hulls in N-D (N ≥ 2). The convhull function is
recommended for 2-D or 3-D computations due to better robustness and performance.

The delaunayTriangulation class supports 2-D or 3-D computation of the convex hull from the
Delaunay triangulation. This computation is not as efficient as the dedicated convhull and
convhulln functions. However, if you have a delaunayTriangulation of a point set and require
the convex hull, the convexHull method can compute the convex hull more efficiently from the
existing triangulation.

The alphaShape function also supports the 2-D or 3-D computation of the convex hull by setting the
alpha radius input parameter to Inf. Like delaunayTriangulation, however, computing the
convex hull using alphaShape is less efficient than using convhull or convhulln directly. The
exception is when you are working with a previously created alpha shape object.

Computing the Convex Hull Using convhull and convhulln
The convhull and convhulln functions take a set of points and output the indices of the points that
lie on the boundary of the convex hull. The point index-based representation of the convex hull
supports plotting and convenient data access. The following examples illustrate the computation and
representation of the convex hull.

The first example uses a 2-D point set from the seamount dataset as input to the convhull function.

Load the data.

load seamount

Compute the convex hull of the point set.

K = convhull(x,y);

K represents the indices of the points arranged in a counter-clockwise cycle around the convex hull.

Plot the data and its convex hull.

plot(x,y,'.','markersize',12)
xlabel('Longitude')
ylabel('Latitude')

 Computing the Convex Hull

7-73



hold on

plot(x(K),y(K),'r')

Add point labels to the points on the convex hull to observe the structure of K.

[K,A] = convhull(x,y);

convhull can compute the convex hull of both 2-D and 3-D point sets. You can reuse the seamount
dataset to illustrate the computation of the 3-D convex hull.

Include the seamount z-coordinate data elevations.

close(gcf)
K = convhull(x,y,z);

In 3-D the boundary of the convex hull, K, is represented by a triangulation. This is a set of triangular
facets in matrix format that is indexed with respect to the point array. Each row of the matrix K
represents a triangle.

Since the boundary of the convex hull is represented as a triangulation, you can use the triangulation
plotting function trisurf.

trisurf(K,x,y,z,'Facecolor','cyan')
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The volume bounded by the 3-D convex hull can optionally be returned by convhull, the syntax is as
follows.

[K,V] = convhull(x,y,z);

The convhull function also provides the option of simplifying the representation of the convex hull
by removing vertices that do not contribute to the area or volume. For example, if boundary facets of
the convex hull are collinear or coplanar, you can merge them to give a more concise representation.
The following example illustrates use of this option.

[x,y,z] = meshgrid(-2:1:2,-2:1:2,-2:1:2);
x = x(:);
y = y(:); 
z = z(:);

K1 = convhull(x,y,z);
subplot(1,2,1)
defaultFaceColor  = [0.6875 0.8750 0.8984];
trisurf(K1,x,y,z,'Facecolor',defaultFaceColor)
axis equal
title(sprintf('Convex hull with simplify\nset to false'))

K2 = convhull(x,y,z,'simplify',true);
subplot(1,2,2)
trisurf(K2,x,y,z,'Facecolor',defaultFaceColor)
axis equal
title(sprintf('Convex hull with simplify\nset to true'))
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MATLAB provides the convhulln function to support the computation of convex hulls and
hypervolumes in higher dimensions. Though convhulln supports N-D, problems in more than 10
dimensions present challenges due to the rapidly growing memory requirements.

The convhull function is superior to convhulln in 2-D and 3-D as it is more robust and gives better
performance.

Convex Hull Computation Using the delaunayTriangulation Class
This example shows the relationship between a Delaunay triangulation of a set of points in 2-D and
the convex hull of that set of points.

The delaunayTriangulation class supports computation of Delaunay triangulations in 2-D and 3-D
space. This class also provides a convexHull method to derive the convex hull from the
triangulation.

Create a Delaunay triangulation of a set of points in 2-D.

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; 0.8 1.2; ...
      3.3 1.5; -4.0 -1.0; -2.3 -0.7; 0 -0.5; 2.0 -1.5; ...
      3.7 -0.8; -3.5 -2.9; -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];

dt = delaunayTriangulation(X);
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Plot the triangulation and highlight the edges that are shared only by a single triangle reveals the
convex hull.

triplot(dt)

fe = freeBoundary(dt)';
hold on
plot(X(fe,1), X(fe,2), '-r', 'LineWidth',2)
hold off

In 3-D, the facets of the triangulation that are shared only by one tetrahedron represent the boundary
of the convex hull.

The dedicated convhull function is generally more efficient than a computation based on the
convexHull method. However, the triangulation based approach is appropriate if:

• You have a delaunayTriangulation of the point set already and the convex hull is also
required.

• You need to add or remove points from the set incrementally and need to recompute the convex
hull frequently after you have edited the points.

Convex Hull Computation Using alphaShape
This example shows how to compute the convex hull of a 2-D point set using the alphaShape
function.
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alphaShape computes a regularized alpha shape from a set of 2-D or 3-D points. You can specify the
alpha radius, which determines how tightly or loosely the alpha shape envelops the point set. When
the alpha radius is set to Inf, the resulting alpha shape is the convex hull of the point set.

Create a set of 2-D points.

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; 0.8 1.2; ...
      3.3 1.5; -4.0 -1.0; -2.3 -0.7; 0 -0.5; 2.0 -1.5; ...
      3.7 -0.8; -3.5 -2.9; -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];

Compute and plot the convex hull of the point set using an alpha shape with alpha radius equal to
Inf.

shp = alphaShape(X,Inf);
plot(shp)

See Also
alphaShape | convexHull | convhull | convhulln | delaunayTriangulation

Related Examples
• “Working with Delaunay Triangulations” on page 7-14

7 Computational Geometry

7-78



Interpolation

• “Gridded and Scattered Sample Data” on page 8-2
• “Interpolating Gridded Data” on page 8-4
• “Interpolation of Multiple 1-D Value Sets” on page 8-34
• “Interpolation of 2-D Selections in 3-D Grids” on page 8-36
• “Interpolating Scattered Data” on page 8-38
• “Interpolation Using a Specific Delaunay Triangulation” on page 8-62
• “Extrapolating Scattered Data” on page 8-65
• “Normalize Data with Differing Magnitudes” on page 8-71
• “Resample Image with Gridded Interpolation” on page 8-74
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Gridded and Scattered Sample Data
Interpolation is a method for estimating the value at a query location that lies within the domain of a
set of sample data points. A sample data set defined by locations X and corresponding values V can be
interpolated to produce a function of the form V = F(X). This function can then be used to evaluate a
query point Xq, to give Vq = F(Xq). This is a single-valued function; for any query Xq within the
domain of X it will produce a unique value Vq. The sample data is assumed to respect this property in
order to produce a satisfactory interpolation. One other interesting characteristic is that the
interpolating function passes through the data points. This is an important distinction between
interpolation and curve/surface fitting. In fitting, the function does not necessarily pass through the
sample data points.

The computation of the value Vq is generally based on the data points in the neighborhood of the
query point Xq. There are numerous approaches to performing interpolation. In MATLAB
interpolation is classified into two categories depending on the structure of the sample data. The
sample data may be ordered in a axis-aligned grid or they may be scattered. In the case of a gridded
distribution of sample points, you can leverage the organized structure of the data to efficiently find
the sample points in the neighborhood of the query. Interpolation of scattered data on the other hand
requires a triangulation of the data points, and this introduces an additional level of computation.

The two approaches to interpolation are covered in the following sections:

• The “Interpolating Gridded Data” on page 8-4 section covers 1-D interpolation, and the N-D (N
≥ 2) interpolation of sample data in axis-aligned grid format:

• The “Interpolating Scattered Data” on page 8-38 section covers the N-D (N ≥ 2) interpolation of
scattered data:
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Interpolating Gridded Data
In this section...
“Gridded Data Representation” on page 8-4
“Grid-Based Interpolation” on page 8-9
“Interpolation with the interp Family of Functions” on page 8-15
“Interpolation with the griddedInterpolant Class” on page 8-25

Gridded Data Representation
• “Grid Representation” on page 8-4
• “Types of Grid Representations” on page 8-6
• “Grid Approximation Techniques” on page 8-7

Grid Representation
Converting Between Grid Formats

To convert a 2-D grid output from meshgrid to the ndgrid format, transpose the coordinate
matrices:

[X_meshgrid,Y_meshgrid] = meshgrid(1:3, 1:5);
[X1_ndgrid,X2_ndgrid] = ndgrid(1:3,1:5);

isequal(X_meshgrid',X1_ndgrid)
ans =
     1
isequal(Y_meshgrid',X2_ndgrid)
ans =
     1

You can also use the permute function.

isequal(permute(X_meshgrid,[2 1]),X1_ndgrid)
ans =
     1

To convert a 3-D meshgrid to ndgrid, transpose each page of the coordinate array. For a given
array my_array, permute(my_array, [2 1 3]) interchanges the rows and columns, and the net
effect is the transposition of every page:

[X_meshgrid,Y_meshgrid,Z_meshgrid] = meshgrid(1:3, 1:5, [1 2]);
[X1_ndgrid,X2_ndgrid,X3_ndgrid] = ndgrid(1:3,1:5, [1 2]);

isequal(permute(X_meshgrid,[2 1 3]),X1_ndgrid)
ans =
     1

isequal(permute(Y_meshgrid,[2 1 3]),X2_ndgrid)
ans =
     1

isequal(permute(Z_meshgrid,[2 1 3]),X3_ndgrid)
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ans =
     1

Grid Vectors

The inputs that you pass to the grid functions are called grid vectors. The grid vectors implicitly
define the grid. Consider two vectors, x1gv = (1:3) and x2gv = (1:5). You can think of these
vectors as a set of coordinates in the x1 direction and a set of coordinates in the x2 direction, like so:

Each arrow points to a location. You can use these two vectors to define a set of grid points, where
one set of coordinates is given by x1gv and the other set of coordinates is given by x2gv. When the
grid vectors are replicated they form two coordinate arrays that make up the full grid:

Monotonic and Nonmonotonic Grids

Your input grid vectors may be monotonic or nonmonotonic. Monotonic vectors contain values that
either increase in that dimension or decrease in that dimension. Conversely, nonmonotonic vectors
contain values that fluctuate. If the input grid vector is nonmonotonic, such as [2 4 6 8 3 1],
ndgrid outputs the following:

[X1,X2] = ndgrid([2 4 6 3 1])
X1 =
     2     2     2     2     2
     4     4     4     4     4
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     6     6     6     6     6
     3     3     3     3     3
     1     1     1     1     1

X2 =
     2     4     6     3     1
     2     4     6     3     1
     2     4     6     3     1
     2     4     6     3     1
     2     4     6     3     1

Your grid vectors should be monotonic if you intend to pass the grid to other MATLAB functions.
Uniform and Nonuniform Grids

A uniform grid is one in which all neighboring points in a given dimension have equal spacing. For
example, [X1, X2] = ndgrid([1 3 5 9],[11 13 15]) is a uniform with a spacing of 2 units in
each dimension.

It is not necessary for the spacing in a uniform grid to be equal in all dimensions. For example, [X1,
X2] = ndgrid([1 2 3 4],[11 13 15]) is considered uniform even though the spacing in X1
and X2 are different.

A grid whose spacing varies within any dimension is a nonuniform grid. For example, [X1, X2] =
ndgrid([1 5 6 9],[11 13 15]) creates a nonuniform grid because the spacing varies along the
first dimension.

Uniform Uniform Nonuniform

Types of Grid Representations

MATLAB allows you to represent a grid in one of three representations: full grid, compact grid, or
default grid. The compact grid and default grid are used primarily for convenience and improved
efficiency.
Full Grid

A full grid is one in which the points are explicitly defined. The outputs of ndgrid and meshgrid
define a full grid.
Compact Grid

The explicit definition of every point in a grid is expensive in terms of memory. The compact grid
representation is a way to dispense with the memory overhead of a full grid. The compact grid
representation stores just the grid vectors instead of the full grid. (For information on how the
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griddedInterpolant class uses the compact grid representation, see “Interpolation with the
griddedInterpolant Class” on page 8-25.)

Default Grid

For many cases, when you are analyzing data, you care about both the distances between points in
the grid and their value. For example, a data set might represent rainfall at specific points in a
geographic area. In this case, you would care about the value at each grid point and the distance
between a point and its neighbor. In other cases, you might care only about the value for a given
point and not about the relative distances. For example, you could be working with input data from an
MRI scan where the distance between the points is completely uniform. In this case, you would care
about the values of the points, but you can be certain of a completely uniform grid. In this case, the
default grid representation is useful. The default grid representation stores the value at a grid point
explicitly and creates grid point coordinates implicitly.

Grid Approximation Techniques

In some cases, you may need to approximate a grid for your data. An approximate grid can be
idealized by a standard MATLAB grid by choosing an appropriate set of grid vectors. For example, a
grid can have points that lie along curved lines. A data set like this might occur if your data is
longitude and latitude based:

In this case, although the input data cannot be gridded directly, you can approximate straight grid
lines at appropriate intervals:

You can also use the default grid on page 8-7.
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Degenerate Grid

A degenerate grid is a special case of grid where one or more dimensions of the grid are singletons. A
singleton dimension can be internal, as in 7:7 in this example:

[X1,X2,X3] = ndgrid(1:2:10,7:7,1:3:15);

or a singleton dimension can be trailing:

[X1,X2,X3] = ndgrid(1:2:10,1:3:15,7:7);

You can create a degenerate grid if you are trying to take a slice of a larger data set. For example,
you may want to analyze just a slice of a 3-D MRI scan. In this case, you will need a slice of data from
a multidimensional grid, such as the dotted slice in the following figure:

If you use indexing to extract the desired data, the resultant grid is degenerate in the X3 dimension:

[X1,X2,X3] = ndgrid(1:3);

X1_slice = X1(:,:,2)
X1_slice =
     1     1     1
     2     2     2
     3     3     3

X2_slice = X2(:,:,2)
X2_slice =
     1     2     3
     1     2     3
     1     2     3

X3_slice = X3(:,:,2)
X3_slice =
     2     2     2
     2     2     2
     2     2     2

The concept of data gridding is very important for understanding the ways in which MATLAB does
grid-based interpolation.
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Grid-Based Interpolation
• “Benefits of Using Grid-Based Interpolation” on page 8-9
• “Interpolation versus Fit” on page 8-11
• “Interpolation Methods” on page 8-11

In grid-based interpolation, the data to be interpolated is represented by an ordered grid. For
example, an arrangement of temperature measurements over a rectangular flat surface at 1-cm
intervals from top-to-bottom vertically and left-to-right horizontally is considered 2-D gridded data.
Grid-based interpolation provides an efficient way to approximate the temperature at any location
between the grid points.

Benefits of Using Grid-Based Interpolation

Grid-based interpolation provides significant savings in computational overhead because the gridded
structure allows MATLAB to locate a query point and its adjacent neighbors very quickly. To
understand how this works, consider the following points on a 1-D grid:

The lines connecting adjacent points represent the cells of the grid. The first cell occurs between x =
1 and x = 3, the second occurs between x = 3 and x = 5, and so on. Each number represents a
coordinate in the grid. If you want to query the grid at x = 6, you would have to use interpolation
because 6 is not explicitly defined in the grid. Since this grid has a uniform spacing of 2, you can
narrow down the location of the query point with a single integer division (6/2 = 3). This tells you
that the point is in the 3rd cell of the grid. Locating a cell in a 2-D grid involves performing this
operation once in each dimension. This operation is called a fast lookup, and MATLAB uses this
technique only when the data is arranged in a uniform grid.

This fast lookup efficiently locates the cell containing a query point Xq. A binary search proceeds as
follows:

1 Locate the center grid point.
2 Compare Xq to the point at the center of the grid.
3 If Xq is less than the point found at the center, eliminate all of the grid points greater than

central point from the search. Similarly, if Xq is greater than the one found at the center, we
eliminate all of the grid points that are less than the central point. Note that by doing this, we
have reduced the number of points we must search by half.

4 Find the center of the remaining grid points and repeat from Step 2 until you are left with one
grid point on either side of your query. These two points mark the boundary of the cell that
contains Xq.
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To illustrate the power of binary searches, consider the following example. Before the advent of
electronic credit card authorizations, the only protection merchants had against fraudulent credit
card purchases was to compare the account number on each customer's credit card against a list of
"bad" account numbers. These lists were bound booklets with tens of thousands of card numbers
arranged in ascending order. How many comparisons would be required to search through a list of
10,000 account numbers for one sale? It turns out that for any list of n ordered items, the maximum
number of comparisons will be no more than the number of times you can divide the list in half, or
log2(n). Therefore, the credit card search will take no more than log2(10e3) or about 13
comparisons. That's a pretty impressive if you consider how many comparisons it would take to
perform a sequential search.

By contrast, consider a problem with a scattered data set.

x = rand(20,1);
y = rand(20,1);
scatter(x,y)
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To find the points in close proximity to a query point would require many more operations. If your
data can be approximated as a grid, grid-based interpolation will provide substantial savings in
computation and memory usage.

If your data is scattered, you can use the tools detailed in “Interpolating Scattered Data” on page 8-
38.

Interpolation versus Fit

The interpolation methods available in MATLAB create interpolating functions that pass though the
sample data points. If you were to query the interpolation function at a sample location, you would
get back the value at that sample data point. By contrast, curve and surface fitting algorithms do not
necessarily pass through the sample data points.

Interpolation Methods

Grid-based interpolation offers several different methods for interpolation. When choosing an
interpolation method, keep in mind that some require more memory or longer computation time than
others. However, you may need to trade off these resources to achieve the desired smoothness in the
result. The following table provides an overview of the benefits, trade-offs, and requirements for each
method.
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Method Description Continuity Memory Usage and
Performance

Requirements

Nearest Neighbor The interpolated
value at a query
point is the value at
the nearest sample
grid point.

Discontinuous • Modest memory
requirements

• Fastest
computation time

• Requires 2 grid
points in each
dimension.

Next Neighbor The interpolated
value at a query
point is the value at
the next sample grid
point.

Discontinuous Same memory
requirements and
computation time as
nearest neighbor.

• Available for 1D
interpolation only.

• Requires at least
2 grid points.

Previous Neighbor The interpolated
value at a query
point is the value at
the previous sample
grid point.

Discontinuous Same memory
requirements and
computation time as
nearest neighbor.

• Available for 1D
interpolation only.

• Requires at least
2 grid points.

Linear The interpolated
value at a query
point is based on
linear interpolation
of the values at
neighboring grid
points in each
respective
dimension.

C0 • Requires more
memory than
nearest neighbor.

• Requires more
computation time
than nearest
neighbor.

• Requires at least
2 grid points in
each dimension.

Pchip The interpolated
value at a query
point is based on a
shape-preserving
piece-wise cubic
interpolation of the
values at
neighboring grid
points.

C1 • Requires more
memory than
linear.

• Requires more
computation time
than linear.

• Available for 1D
interpolation only.

• Requires at least
4 grid points.

Cubic The interpolated
value at a query
point is based on
cubic interpolation of
the values at
neighboring grid
points in each
respective
dimension.

C1 • Requires more
memory than
linear.

• Requires more
computation time
than linear.

• Grid must have
uniform spacing,
though the
spacing in each
dimension does
not have to be the
same.

• Requires at least
4 points in each
dimension.
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Method Description Continuity Memory Usage and
Performance

Requirements

Modified Akima The interpolated
value at a query
point is based on a
piecewise function of
polynomials with
degree at most three
evaluated using the
values of
neighboring grid
points in each
respective
dimension. The
Akima formula is
modified to avoid
overshoots.

C1 • Similar memory
requirements as
spline.

• Requires more
computation time
than cubic, but
typically less than
spline.

• Requires at least
2 grid points in
each dimension

Spline The interpolated
value at a query
point is based on a
cubic interpolation of
the values at
neighboring grid
points in each
respective
dimension.

C2 • Requires more
memory than
cubic.

• Requires more
computation time
than cubic.

• Requires 4 points
in each
dimension.

This figure has some visual comparisons of the different interpolation methods for 1-D data.

 Interpolating Gridded Data

8-13



Comparison of Interpolation Methods

MATLAB provides support for grid-based interpolation in several ways:

• The interp family of functions: interp1, interp2, interp3, and interpn.
• The griddedInterpolant class.

Both the interp family of functions and griddedInterpolant support N-D grid-based
interpolation. However, there are memory and performance benefits to using the
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griddedInterpolant class over the interp functions. Moreover, the griddedInterpolant class
provides a single consistent interface for working with gridded data in any number of dimensions.

Interpolation with the interp Family of Functions
• “The interp1 Function” on page 8-15
• “1-D Extrapolation With interp1” on page 8-16
• “The interp2 Function” on page 8-18
• “The interp3 Function” on page 8-20
• “The interpn Function” on page 8-21

The interp1 Function

This example shows how the interp1 function can be used to interpolate a set of sample values
using the 'pchip' method.

The function interp1 performs one-dimensional interpolation. Its most general form is:

Vq = interp1(X,V,Xq,method)

where X is a vector of coordinates and V is a vector containing the values at those coordinates. Xq is a
vector containing the query points at which to interpolate, and method optionally specifies any of
four interpolation methods: 'nearest', 'linear', 'pchip', or 'spline'.

Create a set of 1-D grid points X and corresponding sample values V.

X = [1 2 3 4 5];
V = [12 16 31 10 6];

Interpolate over finer intervals with 0.1 spacing.

Xq = (1:0.1:5);
Vq = interp1(X,V,Xq,'pchip');

Plot the samples and interpolated values.

plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','pchip');
hold off
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1-D Extrapolation With interp1

This example shows how to use the 'extrap' option to interpolate beyond the domain of your
sample points.

Define the sample points and values.

X = [1 2 3 4 5];
V = [12 16 31 10 6];

Specify the query points, Xq, that extend beyond the domain of X.

Xq = (0:0.1:6);
Vq = interp1(X,V,Xq,'pchip','extrap');

Plot the results.

figure
plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','pchip');
hold off
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In an alternative approach, you can introduce additional points to gain more control over the
behavior in the extrapolated regions. For example, you can constrain the curve to remain flat in the
extrapolated region by extending the domain with repeated values.

X = [0 1 2 3 4 5 6];
V = [12 12 16 31 10 6 6];

Specify the query points, Xq, that extend further beyond the domain of X.

Xq = (-1:0.1:7);

Interpolate using 'pchip'. You can omit the 'extrap' option because it is the default with the
'pchip', 'makima', and 'spline' methods.

Vq = interp1(X,V,Xq,'pchip');

Plot the results.

figure
plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','pchip');
hold off
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The interp2 Function

This example shows how the interp2 function can be used to interpolate the coarsely sampled
peaks function over a finer grid.

The interp2 and interp3 functions perform two and three-dimensional interpolation respectively,
and they interpolate grids in the meshgrid format. The calling syntax for interp2 has the general
form:

Vq = interp2(X,Y,V,Xq,Yq,method)

where X and Y are arrays of coordinates that define a grid in meshgrid format, and V is an array
containing the values at the grid points. Xq and Yq are arrays containing the coordinates of the query
points at which to interpolate. method optionally specifies any of four interpolation methods:
'nearest', 'linear', 'cubic', or 'spline'.

The grid points that comprise X and Y must be monotonically increasing and should conform to the
meshgrid format.

Create a coarse grid and corresponding sample values.

[X,Y] = meshgrid(-3:1:3);
V = peaks(X,Y);

Plot the sample values.
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surf(X,Y,V)
title('Sample Grid');

Generate a finer grid for interpolation.

[Xq,Yq] = meshgrid(-3:0.25:3);

Use interp2 to interpolate at the query points.

Vq = interp2(X,Y,V,Xq,Yq,'linear');

Plot the results.

surf(Xq,Yq,Vq);
title('Refined Grid');
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The interp3 Function

This example shows how to use interp3 to interpolate a 3-D function at a single query point and
compare it to the value generated by an analytic expression.

interp3 works in the same way as interp2 except that it takes two additional arguments: one for
the third dimension in the sample grid and the other for the third dimension in the query points,

Vq = interp3(X,Y,Z,V,Xq,Yq,Zq,method).

As is the case with interp2, the grid points you supply to interp3 must be monotonically
increasing and should conform to the meshgrid format.

Define a function that generates values for X, Y, and Z input.

generatedvalues = @(X,Y,Z)(X.^2 + Y.^3 + Z.^4);

Create the sample data.

[X,Y,Z] = meshgrid((-5:.25:5));
V = generatedvalues(X,Y,Z);

Interpolate at a specific query point.

Vq = interp3(X,Y,Z,V,2.35,1.76,0.23,'cubic')

Vq = 10.9765
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Compare Vq to the value generated by the analytic expression.

V_actual = generatedvalues(2.35,1.76,0.23)

V_actual = 10.9771

The interpn Function

This example shows how the interpn function can be used to interpolate a coarsely sampled
function over a finer grid using the 'cubic' method.

The function interpn performs n-dimensional interpolation on grids that are in the ndgrid format.
Its most general form is:

Vq = interpn(X1,X2,X3,...Xn,V,Y1,Y2,Y3,...,Yn,method)

where X1,X2,X3,...,Xn are arrays of coordinates that define a grid in ndgrid format, and V is an
array containing the values at the grid points. Y1,Y2,Y3,...,Yn are arrays containing the
coordinates of the query points at which to interpolate. method optionally specifies any of four
interpolation methods: 'nearest', 'linear', 'cubic', or 'spline'.

The grid points that comprise X1,X2,X3,...Xn must be monotonically increasing and should
conform to the ndgrid format.

Create a set of grid points and corresponding sample values.

[X1,X2] = ndgrid((-5:1:5));
R = sqrt(X1.^2 + X2.^2)+ eps;
V = sin(R)./(R);

Plot the sample values.

mesh(X1,X2,V)
title('Sample Grid');
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Create a finer grid for interpolation.

[Y1,Y2] = ndgrid((-5:.5:5));

Interpolate over the finer grid and plot the results.

Vq = interpn(X1,X2,V,Y1,Y2,'cubic');
mesh(Y1,Y2,Vq)
title('Refined Grid');
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interpn has an alternate syntax: Vq = interpn(V,ntimes,method) that allows you to
interpolate over a grid that is an integer number of times finer than the sample grid. In the previous
code, Y1 and Y2 queried the interpolant over a grid that contained one extra point between each of
the samples. The following code demonstrates how you can achieve the same result with ntimes=1.

Interpolate over a finer grid using ntimes=1.

Vq = interpn(V,1,'cubic');

Plot the result.

mesh(Vq)
title('Refined Grid with NTIMES');
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Notice that the plot is scaled differently than in the previous example. This is because we called mesh
and passed the values only. The mesh function used a default grid based on the dimensions of Vq. The
output values are the same in both cases.

You can also supply a nonuniform grid of query points. This can be useful if you are interested in
querying the interpolant at a higher resolution in one region of the grid. The following code shows
how this can be done.

Interpolate over a biased grid.

[Y1, Y2] = ndgrid([-5 -4 -3 -2.5 -2 -1.5 -1.25 -1 -0.75 -0.5 -0.20 0]);
Vq = interpn(X1,X2,V,Y1,Y2,'cubic');

Plot the result.

mesh(Y1,Y2,Vq);
title('Biased Grid');
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Interpolation with the griddedInterpolant Class
Like the interpn function, the griddedInterpolant class provides a single interface for grid-
based interpolation in n dimensions. However griddedInterpolant offers the following additional
benefits:

• It offers substantial performance improvements for repeated queries to the interpolant.
• It offers additional performance improvements and savings in memory consumption because it

stores the sample points as a compact grid on page 8-6.

griddedInterpolant accepts sample data that conforms to the ndgrid format. If you wish to
create a griddedInterpolant with meshgrid data, you will need to convert the data to the
ndgrid format. See “Converting meshgrid Data to the ndgrid Format” on page 8-26 for a
demonstration of how to convert 2-D and 3-D meshgrids.

The griddedInterpolant class supports the interpolation methods on page 8-11 that are also
supported by interpn: nearest, linear, pchip, cubic, makima, and spline. However
griddedInterpolant offers greater performance with less overhead.

Constructing the Interpolant

An interpolant is a function that performs interpolation. You create the interpolant by calling the
griddedInterpolant constructor and passing the sample data: the grid and corresponding sample
values. You can also specify the interpolation method if you wish to override the default “linear”
method. The calling syntax has the following forms:
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• For 1-D interpolation, you can pass x, a set of points, and v, a vector of the same length containing
the corresponding values.

F = griddedInterpolant(x,v)
• For higher dimensions, you can supply a full grid. X1,X2,...,Xn specify the grid as a set of n n-D

arrays. These arrays conform to the ndgrid format and are the same size as the sample array V.

 F = griddedInterpolant(X1,X2,...,Xn,V)
• If you know that the distances between adjacent sample points are uniform, you can let

griddedInterpolant create a default grid by passing only the sample points V.

 F = griddedInterpolant(V)
• You can also specify the coordinates of your sample data as a compact grid. The compact grid is

represented by a set of vectors. These vectors are then packaged into a cell array by enclosing
them in curly braces; for example,{x1g,x2g,...,xng} where vectors x1g,x2g,...,xng define
the grid coordinates in each dimension.

 F = griddedInterpolant({x1g,x2g,...,xng},V)
• You can also specify the interpolation method as a final input argument with any of the calling

syntaxes. This example specifies nearest neighbor interpolation.

 F = griddedInterpolant({x1g,x2g,x3g},V,'nearest')

Querying the Interpolant

The griddedInterpolant, F, is evaluated in the same way as you would call a function. Your query
points may be scattered or gridded, and you can pass them to F in any of the following ways:

• You can specify an m-by-n matrix Xq, which contains m scattered points in n dimensions. The
interpolated values Vq are returned as an m-by-1 vector.

  Vq = F(Xq)
• You can also specify the query points as a series of n column vectors x1q,x2q,...,xnq of length

m. These vectors represent m points in n dimensions. The interpolated values Vq are returned as
an m-by-1 vector.

 Vq = F(x1q,x2q,...,xnq)
• You can specify the query points as a series of n n-dimensional arrays representing a full grid. The

arrays X1q,X2q,...,Xnq are all the same size and conform to the ndgrid format. The
interpolated values Vq will also be the same size.

Vq = F(X1q,X2q,...,Xnq)
• You can also specify the query points as a compact grid. x1gq,x2gq,...,xngq are vectors that
define the grid points in each dimension.

Vq = F({x1gq,x2gq,...,xngq})

For example, in 2-D:

Vq = F({(0:0.2:10),(-5:0.5:5)});

Converting meshgrid Data to the ndgrid Format

The griddedInterpolant class accepts ndgrid formatted sample data. If you want to create a
griddedInterpolant with meshgrid data, you should convert it to the ndgrid format first.
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The following example outlines the steps for converting 2-D meshgrid data to the ndgrid format.
We begin by creating the meshgrid and corresponding sample values:

[X,Y] = meshgrid(-2:.1:2,-1:.1:1);
V=0.75*Y.^3-3*Y-2*X.^2;

To convert X, Y, and V to ndgrid format, follow these steps:

1 Transpose each array in the grid as well as the sample data.

X=X';
Y=Y';
V=V';

2 Now create the interpolant.

F = griddedInterpolant(X,Y,V);

To convert a 3-D meshgrid, use the permute function. Again, start by creating the meshgrid and
corresponding sample values:

[X,Y,Z] = meshgrid(-5:5,-3:3,-10:10);
V = X.^3 + Y.^2 + Z;

To convert X, Y, Z, and V to ndgrid format, follow these steps:

1 Use the permute function to interchange the rows and columns of each array. The net effect will
be the transpose of every page.

P = [2 1 3];
X = permute(X,P);
Y = permute(Y,P);
Z = permute(Z,P);
V = permute(V,P);

2 Now create the interpolant.

F = griddedInterpolant(X,Y,Z,V);

griddedInterpolant in One Dimension

This example shows how to create and plot a 1-D interpolant using griddedInterpolant with a
cubic interpolation method.

Create a coarse grid and sample values.

X = [1 2 3 4 5];
V = [12 6 15 9 6];

Construct the griddedInterpolant using a cubic interpolation method.

F = griddedInterpolant(X,V,'cubic')

F = 
  griddedInterpolant with properties:

            GridVectors: {[1 2 3 4 5]}
                 Values: [12 6 15 9 6]
                 Method: 'cubic'
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    ExtrapolationMethod: 'cubic'

The GridVectors property contains the compact grid specifying the coordinates of the sample
values V. The Method property specifies the interpolation method. Notice that we specified 'cubic'
when we created F. If you omit the Method argument, the default interpolation method, linear, will
be assigned to F.

You can access any of the properties of F in the same way you would access the fields in a struct.

F.GridVectors;          % Displays the grid vectors as a cell array
F.Values;               % Displays the sample values
F.Method;               % Displays the interpolation method

Interpolate over finer intervals with 0.1 spacing.

Xq = (1:0.1:5);
Vq = F(Xq);

Plot the result.

plot(X,V,'o');
hold on
plot(Xq,Vq,'-');
legend('samples','Cubic Interpolation');
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griddedInterpolant in Two Dimensions

This example shows how to create and plot a 2-D interpolant using griddedInterpolant.

In two dimensions and higher, you can specify the sample coordinates as an ndgrid, a compact grid,
or a default grid. In this example, we'll supply an ndgrid.

Create a coarse grid and sample values.

[X,Y] = ndgrid(-1:.3:1,-2:.3:2);
V = 0.75*Y.^3 - 3*Y - 2*X.^2;

Construct the griddedInterpolant.

F = griddedInterpolant(X,Y,V,'spline');

Interpolate over finer intervals with 0.1 spacing.

[Xq,Yq] = ndgrid(-1:.1:1,-2:.1:2);
Vq = F(Xq,Yq);

Plot the result.

figure()
surf(X,Y,V);
view(65,60)
title('Sample Data');
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figure()
surf(Xq,Yq,Vq);
view(65,60)
title('Refined with Spline');

griddedInterpolant in Three Dimensions

This example shows how to create a 3-D interpolant and evaluate over a slice plane so you can plot
the values on that plane.

Create a full grid and sample values.

[X,Y,Z] = ndgrid((-5:2:5));
V = X.^3 + Y.^2 + Z.^2;

Construct the griddedInterpolant.

F = griddedInterpolant(X,Y,Z,V,'cubic');

Since we already created the full grid to generate our sample values, we had nothing to lose in
passing it to griddedInterpolant. In practice however, it's common to load the sample data into
MATLAB from disk. The compact grid can very beneficial in such cases because it allows you to
specify the entire grid in a form that is much more economical in terms of memory. If we had loaded V
into MATLAB instead of calculating it from a full grid, we could have created a compact grid to
conserve memory in our workspace. For example,
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gv = {(-5:2:5),(-5:2:5),(-5:2:5)};
F = griddedInterpolant(gv,V,'cubic');

Now interpolate over a plane at Z = 2 with 0.25 spacing.

[Xq,Yq,Zq] = ndgrid((-5:.25:5),(-5:.25:5),2:2);
Vq = F(Xq,Yq,Zq);

Plot the result.

surf(Xq,Yq,Vq);
title('Refined with Linear Interpolation');

griddedInterpolant in Four Dimensions

This example creates a 4-D interpolant and evaluates it at a single point.

1 Create a coarse grid and sample values.

[X1,X2,X3,X4] = ndgrid((-5:2:5));
V = X1.^3 + X2.^2 + X3.^2 +X4;

2 Construct the griddedInterpolant.

F = griddedInterpolant(X1,X2,X3,X4,V,'linear');
3 Query the griddedInterpolant at a single point.

Vq = F([-3.2 2.1 4.7 -1.3])
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MATLAB outputs the following:

ans =

  -10.1000

.

Other Ways of Working with griddedInterpolant

Depending on the arrangement of your query points, you may prefer one evaluation syntax over the
others. For example, create the following interpolant:

[X,Y] = ndgrid(-1:.25:1,-2:.25:2);
V = 0.75*Y.^3-3*Y-2*X.^2;
F = griddedInterpolant(X,Y,V);

Query F using a full grid to give the values at the grid points:

[Xq,Yq] = ndgrid(-1:.1:0,-2:.1:0);
Vq = F(Xq,Yq);

You can also interpolate over the same grid using the compact grid format:

gvq = {-1:.1:0,-2:.1:0};
Vq = F(gvq);

Or you can query a single point:

Vq =  F(.315,.738)

which returns:

Vq =

   -2.1308

or a random set of scattered points:

rng('default')
Vq = F(rand(3,2))

which returns:

Vq =

   -3.4919
   -3.3557
   -0.3515

You can also examine the Values in F:

 F.Values(1,3)

which returns:

 ans =

   -0.0313

8 Interpolation

8-32



Or you can replace the Values array:

F.Values = 2*V;

You can edit the properties in F on-the-fly. For example, you can replace the interpolation method as
follows:

 F.Method = 'cubic';

You can also replace the GridVectors in F. First, examine GridVectors:

gv = F.GridVectors;
gv{1}

gv is a cell array, and gv{1} displays the first grid vector:
ans =

   -1.0000   -0.7500   -0.5000   -0.2500    0    0.2500    0.5000    0.7500    1.0000

Now replace the GridVectors in F by creating a new cell array new_gv:

new_gv = {(0:0.3:1),(0:0.3:1)};
F.GridVectors = new_gv;
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Interpolation of Multiple 1-D Value Sets
This example shows how to interpolate three 1-D data sets in a single pass using
griddedInterpolant. This is a faster alternative to looping over your data sets.

Define the x-coordinates that are common to all value sets.

x = (1:5)';

Define the sets of sample points along the columns of matrix V.

V = [x, 2*x, 3*x]

V = 5×3

     1     2     3
     2     4     6
     3     6     9
     4     8    12
     5    10    15

Create a 2-D grid of sample points.

samplePoints = {x, 1:size(V,2)};

This compact notation specifies a full 2-D grid. The first element, samplePoints{1}, contains the x-
coordinates for V, and samplePoints{2} contains the y-coordinates. The orientation of each
coordinate vector does not matter.

Create the interpolant, F, by passing the sample points and sample values to griddedInterpolant.

F = griddedInterpolant(samplePoints,V);

Create a 2-D query grid with 0.5 spacing along x over all columns of V.

queryPoints = {(1:0.5:5),1:size(V,2)};

Evaluate the interpolant at the x-coordinates for each value set.

Vq = F(queryPoints)

Vq = 9×3

    1.0000    2.0000    3.0000
    1.5000    3.0000    4.5000
    2.0000    4.0000    6.0000
    2.5000    5.0000    7.5000
    3.0000    6.0000    9.0000
    3.5000    7.0000   10.5000
    4.0000    8.0000   12.0000
    4.5000    9.0000   13.5000
    5.0000   10.0000   15.0000

See Also
griddedInterpolant
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Related Examples
• “Interpolation with the griddedInterpolant Class” on page 8-25
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Interpolation of 2-D Selections in 3-D Grids
This example shows how to reduce the dimensionality of the grid plane arrays in 3-D to solve a 2-D
interpolation problem.

In some application areas, it might be necessary to interpolate a lower dimensional plane of a grid;
for example, interpolating a plane of a 3-D grid. When you extract the grid plane from the 3-D grid,
the resulting arrays might be in 3-D format. You can use the squeeze function to reduce the
dimensionality of the grid plane arrays to solve the problem in 2-D.

Create a 3-D sample grid and corresponding values.

[X,Y,Z] = ndgrid(1:5);
V = X.^2 + Y.^2 +Z;

Select a 2-D sample from the grid. In this case, the third column of samples.

x = X(:,3,:);
z = Z(:,3,:);
v = V(:,3,:);

The 2-D plane occurs at Y=3, so the Y dimension has been fixed. x, z, and v are 5-by-1-by-5 arrays.
You must reduce them to 2-D arrays before evaluating the interpolant.

Reduce x, z, and v down to 2-D arrays using the squeeze function.

x = squeeze(x);
z = squeeze(z);
v = squeeze(v);

Interpolate the 2-D slice over a finer grid of query points.

[Xq,Zq] = ndgrid(1:0.5:5);
Vq = interpn(x,z,v,Xq,Zq);

Plot the results.

figure
surf(Xq,Zq,Vq);
xlabel('Xq');
ylabel('Zq');
zlabel('Vq');
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See Also
interpn | squeeze

More About
• “Gridded Data Representation” on page 8-4
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Interpolating Scattered Data
In this section...
“Scattered Data” on page 8-38
“Interpolating Scattered Data Using griddata and griddatan” on page 8-41
“scatteredInterpolant Class” on page 8-43
“Interpolating Scattered Data Using the scatteredInterpolant Class” on page 8-44
“Interpolation of Complex Scattered Data” on page 8-51
“Addressing Problems in Scattered Data Interpolation” on page 8-53

Scattered Data
Scattered data consists of a set of points X and corresponding values V, where the points have no
structure or order between their relative locations. There are various approaches to interpolating
scattered data. One widely used approach uses a Delaunay triangulation of the points.

This example shows how to construct an interpolating surface by triangulating the points and lifting
the vertices by a magnitude V into a dimension orthogonal to X.

There are variations on how you can apply this approach. In this example, the interpolation is broken
down into separate steps; typically, the overall interpolation process is accomplished with one
function call.

Create a scattered data set on the surface of a paraboloid.

X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; ...
      0.8 1.2; 3.3 1.5; -4.0 -1.0; -2.3 -0.7; 
      0 -0.5; 2.0 -1.5; 3.7 -0.8; -3.5 -2.9; ...
      -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];
V = X(:,1).^2 + X(:,2).^2;
hold on
plot3(X(:,1),X(:,2),zeros(15,1), '*r')
axis([-4, 4, -4, 4, 0, 25]);
grid
stem3(X(:,1),X(:,2),V,'^','fill')
hold off
view(322.5, 30);
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Create a Delaunay triangulation, lift the vertices, and evaluate the interpolant at the query point Xq.

figure('Color', 'white')
t = delaunay(X(:,1),X(:,2));

hold on

trimesh(t,X(:,1),X(:,2), zeros(15,1), ...
    'EdgeColor','r', 'FaceColor','none')
defaultFaceColor  = [0.6875 0.8750 0.8984];
trisurf(t,X(:,1),X(:,2), V, 'FaceColor', ...
    defaultFaceColor, 'FaceAlpha',0.9);
plot3(X(:,1),X(:,2),zeros(15,1), '*r')
axis([-4, 4, -4, 4, 0, 25]);
grid
plot3(-2.6,-2.6,0,'*b','LineWidth', 1.6)
plot3([-2.6 -2.6]',[-2.6 -2.6]',[0 13.52]','-b','LineWidth',1.6)
hold off

view(322.5, 30);

text(-2.0, -2.6, 'Xq', 'FontWeight', 'bold', ...
'HorizontalAlignment','center', 'BackgroundColor', 'none');
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This step generally involves traversing of the triangulation data structure to find the triangle that
encloses the query point. Once you find the point, the subsequent steps to compute the value depend
on the interpolation method. You could compute the nearest point in the neighborhood and use the
value at that point (the nearest-neighbor interpolation method). You could also compute the weighted
sum of values of the three vertices of the enclosing triangle (the linear interpolation method). These
methods and their variants are covered in texts and references on scattered data interpolation.

Though the illustration highlights 2-D interpolation, you can apply this technique to higher
dimensions. In more general terms, given a set of points X and corresponding values V, you can
construct an interpolant of the form V = F(X). You can evaluate the interpolant at a query point Xq,
to give Vq = F(Xq). This is a single-valued function; for any query point Xq within the convex hull of
X, it will produce a unique value Vq. The sample data is assumed to respect this property in order to
produce a satisfactory interpolation.

MATLAB provides two ways to perform triangulation-based scattered data interpolation:

• The functions griddata and griddatan
• The scatteredInterpolant class

The griddata function supports 2-D scattered data interpolation. The griddatan function supports
scattered data interpolation in N-D; however, it is not practical in dimensions higher than 6-D for
moderate to large point sets, due to the exponential growth in memory required by the underlying
triangulation.
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The scatteredInterpolant class supports scattered data interpolation in 2-D and 3-D space. Use
of this class is encouraged as it is more efficient and readily adapts to a wider range of interpolation
problems.

Interpolating Scattered Data Using griddata and griddatan
The griddata and griddatan functions take a set of sample points, X, corresponding values, V, and
query points, Xq, and return the interpolated values, Vq. The calling syntax is similar for each
function; the primary distinction is the 2-D / 3–D griddata function lets you define the points in
terms of X, Y / X, Y, Z coordinates. These two functions interpolate scattered data at predefined grid-
point locations; the intent is to produce gridded data, hence the name. Interpolation is more general
in practice. You might want to query at arbitrary locations within the convex hull of the points.

This example shows how the griddata function interpolates scattered data at a set of grid points
and uses this gridded data to create a contour plot.

Plot the seamount data set (a seamount is an underwater mountain). The data set consists of a set of
longitude (x) and latitude (y) locations, and corresponding seamount elevations (z) measured at
those coordinates.

load seamount
plot3(x,y,z,'.','markersize',12)
xlabel('Longitude')
ylabel('Latitude')
zlabel('Depth in Feet')
grid on
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Use meshgrid to create a set of 2-D grid points in the longitude-latitude plane and then use
griddata to interpolate the corresponding depth at those points.

figure
[xi,yi] = meshgrid(210.8:0.01:211.8, -48.5:0.01:-47.9);
zi = griddata(x,y,z,xi,yi);
surf(xi,yi,zi);
xlabel('Longitude')
ylabel('Latitude')
zlabel('Depth in Feet')

Now that the data is in a gridded format, compute and plot the contours.

figure
[c,h] = contour(xi,yi,zi);
clabel(c,h);
xlabel('Longitude')
ylabel('Latitude')
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You can also use griddata to interpolate at arbitrary locations within the convex hull of the dataset.
For example, the depth at coordinates (211.3, -48.2) is given by:

zi = griddata(x,y,z, 211.3, -48.2);

The underlying triangulation is computed each time the griddata function is called. This can impact
performance if the same data set is interpolated repeatedly with different query points. The
scatteredInterpolant class described in “Interpolating Scattered Data Using the
scatteredInterpolant Class” on page 8-44 is more efficient in this respect.

MATLAB software also provides griddatan to support interpolation in higher dimensions. The
calling syntax is similar to griddata.

scatteredInterpolant Class
The griddata function is useful when you need to interpolate to find the values at a set of
predefined grid-point locations. In practice, interpolation problems are often more general, and the
scatteredInterpolant class provides greater flexibility. The class has the following advantages:

• It produces an interpolating function that can be queried efficiently. That is, the underlying
triangulation is created once and reused for subsequent queries.

• The interpolation method can be changed independently of the triangulation.
• The values at the data points can be changed independently of the triangulation.
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• Data points can be incrementally added to the existing interpolant without triggering a complete
recomputation. Data points can also be removed and moved efficiently, provided the number of
points edited is small relative to the total number of sample points.

• It provides extrapolation functionality for approximating values at points that fall outside the
convex hull. See “Extrapolating Scattered Data” on page 8-65 for more information.

scatteredInterpolant provides the following interpolation methods:

• 'nearest' — Nearest-neighbor interpolation, where the interpolating surface is discontinuous.
• 'linear' — Linear interpolation (default), where the interpolating surface is C0 continuous.
• 'natural' — Natural-neighbor interpolation, where the interpolating surface is C1 continuous

except at the sample points.

The scatteredInterpolant class supports scattered data interpolation in 2-D and 3-D space. You
can create the interpolant by calling scatteredInterpolant and passing the point locations and
corresponding values, and optionally the interpolation and extrapolation methods. See the
scatteredInterpolant reference page for more information about the syntaxes you can use to
create and evaluate a scatteredInterpolant.

Interpolating Scattered Data Using the scatteredInterpolant Class
This example shows how to use scatteredInterpolant to interpolate a scattered sampling of the
peaks function.

Create the scattered data set.

rng default;
X = -3 + 6.*rand([250 2]);
V = peaks(X(:,1),X(:,2));

Create the interpolant.

F = scatteredInterpolant(X,V)

F = 
  scatteredInterpolant with properties:

                 Points: [250x2 double]
                 Values: [250x1 double]
                 Method: 'linear'
    ExtrapolationMethod: 'linear'

The Points property represents the coordinates of the data points, and the Values property
represents the associated values. The Method property represents the interpolation method that
performs the interpolation. The ExtrapolationMethod property represents the extrapolation
method used when query points fall outside the convex hull.

You can access the properties of F in the same way you access the fields of a struct. For example,
use F.Points to examine the coordinates of the data points.
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Evaluate the interpolant.

scatteredInterpolant provides subscripted evaluation of the interpolant. It is evaluated the same
way as a function. You can evaluate the interpolant as follows. In this case, the value at the query
location is given by Vq. You can evaluate at a single query point:

Vq = F([1.5 1.25])

Vq = 1.4838

You can also pass individual coordinates:

Vq = F(1.5, 1.25)

Vq = 1.4838

You can evaluate at a vector of point locations:

Xq = [0.5 0.25; 0.75 0.35; 1.25 0.85];
Vq = F(Xq)

Vq = 3×1

    0.4057
    1.2199
    2.1639

You can evaluate F at grid point locations and plot the result.

[Xq,Yq] = meshgrid(-2.5:0.125:2.5);
Vq = F(Xq,Yq);
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b');
zlabel('Value - V','fontweight','b');
title('Linear Interpolation Method','fontweight','b');
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Change the interpolation method.

You can change the interpolation method on the fly. Set the method to 'nearest'.

F.Method = 'nearest';

Reevaluate and plot the interpolant as before.

Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'),ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Nearest neighbor Interpolation Method','fontweight','b');
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Change the interpolation method to natural neighbor, reevaluate, and plot the results.

F.Method = 'natural';
Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'),ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Natural neighbor Interpolation Method','fontweight','b');
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Replace the values at the sample data locations.

You can change the values V at the sample data locations, X, on the fly. This is useful in practice as
some interpolation problems may have multiple sets of values at the same locations. For example,
suppose you want to interpolate a 3-D velocity field that is defined by locations (x, y, z) and
corresponding componentized velocity vectors (Vx, Vy, Vz). You can interpolate each of the velocity
components by assigning them to the values property (V) in turn. This has important performance
benefits, because it allows you to reuse the same interpolant without incurring the overhead of
computing a new one each time.

The following steps show how to change the values in our example. You will compute the values using
the expression, v = xe−x2− y2.

V = X(:,1).*exp(-X(:,1).^2-X(:,2).^2);
F.Values = V;

Evaluate the interpolant and plot the result.

Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Natural neighbor interpolation of v = x.*exp(-x.^2-y.^2)')
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Add additional point locations and values to the existing interpolant.

This performs an efficient update as opposed to a complete recomputation using the augmented data
set.

When adding sample data, it is important to add both the point locations and the corresponding
values.

Continuing the example, create new sample points as follows:

X = -1.5 + 3.*rand(100,2);
V = X(:,1).*exp(-X(:,1).^2-X(:,2).^2);

Add the new points and corresponding values to the triangulation.

F.Points(end+(1:100),:) = X;
F.Values(end+(1:100)) = V;

Evaluate the refined interpolant and plot the result.

Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b');
zlabel('Value - V','fontweight','b');
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Remove data from the interpolant.

You can incrementally remove sample data points from the interpolant. You also can remove data
points and corresponding values from the interpolant. This is useful for removing spurious outliers.

When removing sample data, it is important to remove both the point location and the corresponding
value.

Remove the 25th point.

F.Points(25,:) = [];
F.Values(25) = [];

Remove points 5 to 15.

F.Points(5:15,:) = [];
F.Values(5:15) = [];

Retain 150 points and remove the rest.

F.Points(150:end,:) = [];
F.Values(150:end) = [];

This creates a coarser surface when you evaluate and plot:

Vq = F(Xq,Yq);
figure
surf(Xq,Yq,Vq);
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xlabel('X','fontweight','b'), ylabel('Y','fontweight','b');
zlabel('Value - V','fontweight','b');
title('Interpolation of v = x.*exp(-x.^2-y.^2) with sample points removed')

Interpolation of Complex Scattered Data
This example shows how to interpolate scattered data when the value at each sample location is
complex.

Create the sample data.

rng('default')
X = -3 + 6*rand([250 2]);
V = complex(X(:,1).*X(:,2), X(:,1).^2 + X(:,2).^2);

Create the interpolant.

F = scatteredInterpolant(X,V);

Create a grid of query points and evaluate the interpolant at the grid points.

[Xq,Yq] = meshgrid(-2.5:0.125:2.5);
Vq = F(Xq,Yq);

Plot the real component of Vq.

VqReal = real(Vq);
figure
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surf(Xq,Yq,VqReal);
xlabel('X');
ylabel('Y');
zlabel('Real Value - V');
title('Real Component of Interpolated Value');

Plot the imaginary component of Vq.

VqImag = imag(Vq);
figure
surf(Xq,Yq,VqImag);
xlabel('X');
ylabel('Y');
zlabel('Imaginary Value - V');
title('Imaginary Component of Interpolated Value');
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Addressing Problems in Scattered Data Interpolation
Many of the illustrative examples in the previous sections dealt with the interpolation of point sets
that were sampled on smooth surfaces. In addition, the points were relatively uniformly spaced. For
example, clusters of points were not separated by relatively large distances. In addition, the
interpolant was evaluated well within the convex hull of the point locations.

When dealing with real-world interpolation problems the data may be more challenging. It may come
from measuring equipment that is likely to produce inaccurate readings or outliers. The underlying
data may not vary smoothly, the values may jump abruptly from point to point. This section provides
you with some guidelines to identify and address problems with scattered data interpolation.

Input Data Containing NaNs

You should preprocess sample data that contains NaN values to remove the NaN values as this data
cannot contribute to the interpolation. If a NaN is removed, the corresponding data values/
coordinates should also be removed to ensure consistency. If NaN values are present in the sample
data, the constructor will error when called.

The following example illustrates how to remove NaNs.

Create some data and replace some entries with NaN:

x = rand(25,1)*4-2;
y = rand(25,1)*4-2;
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V = x.^2 + y.^2;

x(5) = NaN; x(10) = NaN; y(12) = NaN; V(14) = NaN;

This code errors:

F = scatteredInterpolant(x,y,V);

Instead, find the sample point indices of the NaNs and then construct the interpolant:

nan_flags = isnan(x) | isnan(y) | isnan(V);

x(nan_flags) = [];
y(nan_flags) = [];
V(nan_flags) = [];

F = scatteredInterpolant(x,y,V);

The following example is similar if the point locations are in matrix form. First, create data and
replace some entries with NaN values.

X = rand(25,2)*4-2;
V = X(:,1).^2 + X(:,2).^2;

X(5,1) = NaN; X(10,1) = NaN; X(12,2) = NaN; V(14) = NaN;

This code errors:

F = scatteredInterpolant(X,V);

Find the sample point indices of the NaN and then construct the interpolant:

nan_flags = isnan(X(:,1)) | isnan(X(:,2)) | isnan(V);

X(nan_flags,:) = [];
V(nan_flags) = [];

F = scatteredInterpolant(X,V);

Interpolant Outputs NaN Values

griddata and griddatan return NaN values when you query points outside the convex hull using
the 'linear' or 'natural' methods. However, you can expect numeric results if you query the
same points using the 'nearest' method. This is because the nearest neighbor to a query point
exists both inside and outside the convex hull.

If you want to compute approximate values outside the convex hull, you should use
scatteredInterpolant. See “Extrapolating Scattered Data” on page 8-65 for more information.

Handling Duplicate Point Locations

Input data is rarely “perfect” and your application could have to handle duplicate data point
locations. Two or more data points at the same location in your data set can have different
corresponding values. In this scenario, scatteredInterpolant merges the points and computes
the average of the corresponding values. This example shows how scatteredInterpolant
performs an interpolation on a data set with duplicate points.
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1 Create some sample data that lies on a planar surface:

x = rand(100,1)*6-3;
y = rand(100,1)*6-3;

V = x + y;
2 Introduce a duplicate point location by assigning the coordinates of point 50 to point 100:

x(50) = x(100);
y(50) = y(100);

3 Create the interpolant. Notice that F contains 99 unique data points:

F = scatteredInterpolant(x,y,V)
4 Check the value associated with the 50th point:

F.Values(50)

This value is the average of the original 50th and 100th value, as these two data points have the same
location:

(V(50)+V(100))/2

In this scenario the interpolant resolves the ambiguity in a reasonable manner. However in some
instances, data points can be close rather than coincident, and the values at those locations can be
different.

In some interpolation problems, multiple sets of sample values might correspond to the same
locations. For example, a set of values might be recorded at the same locations at different periods in
time. For efficiency, you can interpolate one set of readings and then replace the values to interpolate
the next set.

Always use consistent data management when replacing values in the presence of duplicate point
locations. Suppose you have two sets of values associated with the 100 data point locations and you
would like to interpolate each set in turn by replacing the values.

1 Consider two sets of values:

V1 = x + 4*y;
V2 = 3*x + 5*y

2 Create the interpolant. scatteredInterpolant merges the duplicate locations and the
interpolant contains 99 unique sample points:

F = scatteredInterpolant(x,y,V1)

Replacing the values directly via F.Values = V2 means assigning 100 values to 99 samples.
The context of the previous merge operation is lost; the number of sample locations will not
match the number of sample values. The interpolant will require the inconsistency to be resolved
to support queries.

In this more complex scenario, it is necessary to remove the duplicates prior to creating and editing
the interpolant. Use the unique function to find the indices of the unique points. unique can also
output arguments that identify the indices of the duplicate points.

[~, I, ~] = unique([x y],'first','rows');
I = sort(I);
x = x(I);
y = y(I);
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V1 = V1(I);
V2 = V2(I);
F = scatteredInterpolant(x,y,V1)

Now you can use F to interpolate the first data set. Then you can replace the values to interpolate the
second data set.

F.Values = V2;

Achieving Efficiency When Editing a scatteredInterpolant

scatteredInterpolant allows you to edit the properties representing the sample values
(F.Values) and the interpolation method (F.Method). Since these properties are independent of the
underlying triangulation, the edits can be performed efficiently. However, like working with a large
array, you should take care not to accidentally create unnecessary copies when editing the data.
Copies are made when more than one variable references an array and that array is then edited.

A copy is not made in the following:

A1 = magic(4)
A1(4,4) = 11

However, a copy is made in this scenario because the array is referenced by another variable. The
arrays A1 and A2 can no longer share the same data once the edit is made:

A1 = magic(4)
A2 = A1
A1(4,4) = 32

Similarly, if you pass the array to a function and edit the array within that function, a deep copy may
be made depending on how the data is managed. scatteredInterpolant contains data and it
behaves like an array—in MATLAB language, it is called a value object. The MATLAB language is
designed to give optimum performance when your application is structured into functions that reside
in files. Prototyping at the command line may not yield the same level of performance.

The following example demonstrates this behavior, but it should be noted that performance gains in
this example do not generalize to other functions in MATLAB.

This code does not produce optimal performance:

x = rand(1000000,1)*4-2;
y = rand(1000000,1)*4-2;
z = x.*exp(-x.^2-y.^2);
tic; F = scatteredInterpolant(x,y,z); toc
tic; F.Values = 2*z; toc

You can place the code in a function file to execute it more efficiently.

When MATLAB executes a program that is composed of functions that reside in files, it has a
complete picture of the execution of the code; this allows MATLAB to optimize for performance. When
you type the code at the command line, MATLAB cannot anticipate what you are going to type next,
so it cannot perform the same level of optimization. Developing applications through the creation of
reusable functions is general and recommended practice, and MATLAB will optimize the performance
in this setting.
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Interpolation Results Poor Near the Convex Hull

The Delaunay triangulation is well suited to scattered data interpolation problems because it has
favorable geometric properties that produce good results. These properties are:

• The rejection of sliver-shaped triangles/tetrahedra in favor of more equilateral-shaped ones.
• The empty circumcircle property that implicitly defines a nearest-neighbor relation between the

points.

The empty circumcircle property ensures the interpolated values are influenced by sample points in
the neighborhood of the query location. Despite these qualities, in some situations the distribution of
the data points may lead to poor results and this typically happens near the convex hull of the sample
data set. When the interpolation produces unexpected results, a plot of the sample data and
underlying triangulation can often provide insight into the problem.

This example shows an interpolated surface that deteriorates near the boundary.

Create a sample data set that will exhibit problems near the boundary.

t = 0.4*pi:0.02:0.6*pi;
x1 = cos(t)';
y1 = sin(t)'-1.02;
x2 = x1;
y2 = y1*(-1);
x3 = linspace(-0.3,0.3,16)';
y3 = zeros(16,1);
x = [x1;x2;x3];
y = [y1;y2;y3];

Now lift these sample points onto the surface z = x2 + y2 and interpolate the surface.

z = x.^2 + y.^2;
F = scatteredInterpolant(x,y,z);
[xi,yi] = meshgrid(-0.3:.02:0.3, -0.0688:0.01:0.0688);
zi = F(xi,yi);
mesh(xi,yi,zi)
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b') 
zlabel('Value - V','fontweight','b')
title('Interpolated Surface');
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The actual surface is:

zi = xi.^2 + yi.^2;
figure
mesh(xi,yi,zi)
title('Actual Surface')
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To understand why the interpolating surface deteriorates near the boundary, it is helpful to look at
the underlying triangulation:

dt = delaunayTriangulation(x,y);
figure
plot(x,y,'*r')
axis equal
hold on
triplot(dt)
plot(x1,y1,'-r')
plot(x2,y2,'-r')
title('Triangulation Used to Create the Interpolant')
hold off
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The triangles within the red boundaries are relatively well shaped; they are constructed from points
that are in close proximity and the interpolation works well in this region. Outside the red boundary,
the triangles are sliver-like and connect points that are remote from each other. There is not
sufficient sampling to accurately capture the surface, so it is not surprising that the results in these
regions are poor. In 3-D, visual inspection of the triangulation gets a bit trickier, but looking at the
point distribution can often help illustrate potential problems.

The MATLAB® 4 griddata method, 'v4', is not triangulation-based and is not affected by
deterioration of the interpolation surface near the boundary.

[xi,yi] = meshgrid(-0.3:.02:0.3, -0.0688:0.01:0.0688);
zi = griddata(x,y,z,xi,yi,'v4');
mesh(xi,yi,zi)
xlabel('X','fontweight','b'), ylabel('Y','fontweight','b')
zlabel('Value - V','fontweight','b')
title('Interpolated surface from griddata with v4 method','fontweight','b');
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The interpolated surface from griddata using the 'v4' method corresponds to the expected actual
surface.
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Interpolation Using a Specific Delaunay Triangulation
In this section...
“Nearest-Neighbor Interpolation Using a delaunayTriangulation Query” on page 8-62
“Linear Interpolation Using a delaunayTriangulation Query” on page 8-63

Nearest-Neighbor Interpolation Using a delaunayTriangulation Query
This example shows how to perform nearest-neighbor interpolation on a scattered set of points using
a specific Delaunay triangulation.

Create a delaunayTriangulation of a set of scattered points in 2-D.

rng('default')
P = -2.5 + 5*rand([50 2]);
DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [50x2 double]
    ConnectivityList: [84x3 double]
         Constraints: []

Sample a parabolic function, V(x,y), at the points specified in P.

V = P(:,1).^2 + P(:,2).^2;

Define 10 random query points.

Pq = -2 + 4*rand([10 2]);

Perform nearest-neighbor interpolation on V using the triangulation, DT. Use nearestNeighbor to
find the indices of the nearest-neighbor vertices, vi, for the set of query points, Pq. Then examine the
specific values of V at the indices.

vi = nearestNeighbor(DT,Pq);
Vq = V(vi)

Vq = 10×1

    2.7208
    3.7792
    1.8394
    3.5086
    1.8394
    3.5086
    1.4258
    5.4053
    4.0670
    0.5586
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Linear Interpolation Using a delaunayTriangulation Query
This example shows how to perform linear interpolation on a scattered set of points with a specific
Delaunay triangulation.

You can use the triangulation method, pointLocation, to compute the enclosing triangle of a
query point and the magnitudes of the vertex weights. The weights are called barycentric
coordinates, and they represent a partition of unity. That is, the sum of the three weights equals 1.
The interpolated value of a function, V, at a query point is the sum of the weighted values of V at the
three vertices. That is, if the function has values, V1, V2, V3 at the three vertices, and the weights are
B1, B2, B3, then the interpolated value is (V1)(B1) + (V2)(B2) + (V3)(B3).

Create a delaunayTriangulation of a set of scattered points in 2-D.

rng('default')
P = -2.5 + 5*rand([50 2]);
DT = delaunayTriangulation(P)

DT = 
  delaunayTriangulation with properties:

              Points: [50x2 double]
    ConnectivityList: [84x3 double]
         Constraints: []

Sample a parabolic function, V(x,y), at the points in P.

V = P(:,1).^2 + P(:,2).^2;

Define 10 random query points.

Pq = -2 + 4*rand([10 2]);

Find the triangle that encloses each query point using the pointLocation method. In the code
below, ti contains the IDs of the enclosing triangles and bc contains the barycentric coordinates
associated with each triangle.

[ti,bc] = pointLocation(DT,Pq);

Find the values of V(x,y) at the vertices of each enclosing triangle.

triVals = V(DT(ti,:));

Calculate the sum of the weighted values of V(x,y) using the dot product.

Vq = dot(bc',triVals')'

Vq = 10×1

    2.2736
    4.2596
    2.1284
    3.5372
    4.6232
    2.1797
    1.2779
    4.7644
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    3.6311
    1.2196

See Also
delaunayTriangulation | nearestNeighbor | pointLocation

More About
• “Interpolating Scattered Data” on page 8-38
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Extrapolating Scattered Data
In this section...
“Factors That Affect the Accuracy of Extrapolation” on page 8-65
“Compare Extrapolation of Coarsely and Finely Sampled Scattered Data” on page 8-65
“Extrapolation of 3-D Data” on page 8-69

Factors That Affect the Accuracy of Extrapolation
scatteredInterpolant provides functionality for approximating values at points that fall outside
the convex hull. The 'linear' extrapolation method is based on a least-squares approximation of
the gradient at the boundary of the convex hull. The values it returns for query points outside the
convex hull are based on the values and gradients at the boundary. The quality of the solution
depends on how well you’ve sampled your data. If your data is coarsely sampled, the quality of the
extrapolation is poor.

In addition, the triangulation near the convex hull boundary can have sliver-like triangles. These
triangles can compromise your extrapolation results in the same way that they can compromise
interpolation results. See “Interpolation Results Poor Near the Convex Hull” on page 8-57 for more
information.

You should inspect your extrapolation results visually using your knowledge of the behavior outside
the domain.

Compare Extrapolation of Coarsely and Finely Sampled Scattered Data
This example shows how to interpolate two different samplings of the same parabolic function. It also
shows that a better distribution of sample points produces better extrapolation results.

Create a radial distribution of points spaced 10 degrees apart around 10 concentric circles. Use
bsxfun to compute the coordinates, x = cosθ and y = sinθ.

theta = 0:10:350;
c = cosd(theta);
s = sind(theta);
r = 1:10;

x1 = bsxfun(@times,r.',c);
y1 = bsxfun(@times,r.',s);

figure
plot(x1,y1,'*b')
axis equal
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Create a second, more coarsely distributed set of points. Use the rand function to create random
samplings in the range, [-10, 10].

rng default;
x2 = -10 + 20*rand([25 1]);
y2 = -10 + 20*rand([25 1]);
figure
plot(x2,y2,'*')
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Sample a parabolic function, v(x,y), at both sets of points.

v1 = x1.^2 + y1.^2;
v2 = x2.^2 + y2.^2;

Create a scatteredInterpolant for each sampling of v(x,y).

F1 = scatteredInterpolant(x1(:),y1(:),v1(:));
F2 = scatteredInterpolant(x2(:),y2(:),v2(:));

Create a grid of query points that extend beyond each domain.

[xq,yq] = ndgrid(-20:20);

Evaluate F1 and plot the results.

figure
vq1 = F1(xq,yq);
surf(xq,yq,vq1)
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Evaluate F2 and plot the results.

figure
vq2 = F2(xq,yq);
surf(xq,yq,vq2)
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The quality of the extrapolation is not as good for F2 because of the coarse sampling of points in v2.

Extrapolation of 3-D Data
This example shows how to extrapolate a well sampled 3-D gridded dataset using
scatteredInterpolant. The query points lie on a planar grid that is completely outside domain.

Create a 10-by-10-by-10 grid of sample points. The points in each dimension are in the range, [-10,
10].

[x,y,z] = ndgrid(-10:10);

Sample a function, v(x,y,z), at the sample points.

v = x.^2 + y.^2 + z.^2;

Create a scatteredInterpolant, specifying linear interpolation and extrapolation.

F = scatteredInterpolant(x(:),y(:),z(:),v(:),'linear','linear');

Evaluate the interpolant over an x-y grid spanning the range, [-20,20] at an elevation, z = 15.

[xq,yq,zq] = ndgrid(-20:20,-20:20,15);
vq = F(xq,yq,zq);
figure
surf(xq,yq,vq)
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The extrapolation returned good results because the function is well sampled.
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Normalize Data with Differing Magnitudes
This example shows how to use normalization to improve scattered data interpolation results with
griddata. Normalization can improve the interpolation results in some cases, but in others it can
compromise the accuracy of the solution. Whether to use normalization is a judgment made based on
the nature of the data being interpolated.

• Benefits: Normalizing your data can potentially improve the interpolation result when the
independent variables have different units and substantially different scales. In this case, scaling
the inputs to have similar magnitudes might improve the numerical aspects of the interpolation.
An example where normalization would be beneficial is if x represents engine speed in RPMs from
500 to 3500, and y represents engine load from 0 to 1. The scales of x and y differ by a few orders
of magnitude, and they have different units.

• Cautions: Use caution when normalizing your data if the independent variables have the same
units, even if the scales of the variables are different. With data of the same units, normalization
distorts the solution by adding a directional bias, which affects the underlying triangulation and
ultimately compromises the accuracy of the interpolation. An example where normalization is
erroneous is if both x and y represent locations and have units of meters. Scaling x and y
unequally is not recommended because 10 m due East should be spatially the same as 10 m due
North.

Create some sample data where the values in y are a few orders of magnitude larger than those in x.
Assume that x and y have different units.

x = rand(1,500)/100; 
y = 2.*(rand(1,500)-0.5).*90; 
z = (x.*1e2).^2; 

Use the sample data to construct a grid of query points. Interpolate the sample data on the grid and
plot the results.

X = linspace(min(x),max(x),25); 
Y = linspace(min(y),max(y),25); 
[xq, yq] = meshgrid(X,Y); 
zq = griddata(x,y,z,xq,yq); 

plot3(x,y,z,'mo')
hold on
mesh(xq,yq,zq)
xlabel('x')
ylabel('y')
hold off
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The result produced by griddata is not very smooth and seems to be noisy. The differing scales in
the independent variables contribute to this, since a small change in the size of one variable can lead
to a much larger change in the size of the other variable.

Since x and y have different units, normalizing them so that they have similar magnitudes should
help produce better results. Normalize the sample points using z-scores and regenerate the
interpolation using griddata.

% Normalize Sample Points
x = normalize(x);
y = normalize(y);

% Regenerate Grid 
X = linspace(min(x),max(x),25); 
Y = linspace(min(y),max(y),25); 
[xq, yq] = meshgrid(X,Y); 

% Interpolate and Plot
zq = griddata(x,y,z,xq,yq);
plot3(x,y,z,'mo')
hold on
mesh(xq,yq,zq)
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In this case, normalizing the sample points permits griddata to compute a smoother solution.

See Also
griddata | griddatan | scatteredInterpolant
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Resample Image with Gridded Interpolation
This example shows how to use griddedInterpolant to resample the pixels in an image.
Resampling an image is useful for adjusting the resolution and size, and you also can use it to smooth
out the pixels after zooming.

Load Image

Load and show the image ngc6543a.jpg, which is a Hubble Space Telescope image of the planetary
nebulae NGC 6543. This image displays several interesting structures, such as concentric gas shells,
jets of high-speed gas, and unusual knots of gas. The matrix A that represents the image is a 650-
by-600-by-3 matrix of uint8 integers.

A = imread('ngc6543a.jpg');
imshow(A)
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Create Interpolant

Create a gridded interpolant object for the image. For images it is suitable to use the default grid,
since the pixels have positive integer locations. Since griddedInterpolant only works for double-
precision and single-precision matrices, convert the uint8 matrix to double precision.

F = griddedInterpolant(double(A));
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Resample Image Pixels

When you are resampling an image using a large number of grid points, the best way to query the
interpolant is using grid vectors. The grid vectors are grouped together as column vectors in a cell
array {xg1,xg2,...,xgN}. Grid vectors are a compact way to represent the grid of query points.
With grid vectors, griddedInterpolant does not need to form the full grid to carry out the
calculations.

Find the size of the original matrix dimensions, and use those dimension sizes to resample the image
so that it is 120% the size. That is, for each 5 pixels in the original image, the interpolated image has
6 pixels.

[sx,sy,sz] = size(A);
xq = (0:5/6:sx)';
yq = (0:5/6:sy)';
zq = (1:sz)';
vq = uint8(F({xq,yq,zq}));
figure
imshow(vq)
title('Higher Resolution')
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Similarly, reduce the size of the image by querying the interpolant with 55% fewer points than the
original image. While you can simply index into the original image matrix to produce lower resolution
images, interpolation enables you to resample the image at noninteger pixel locations.

xq = (0:1.55:sx)';
yq = (0:1.55:sy)';
zq = (1:sz)';
vq = uint8(F({xq,yq,zq}));
figure
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imshow(vq)
title('Lower Resolution')

Smooth Out Zooming Artifacts

As you zoom in on an image, the pixels in the region of interest become larger and larger and detail
in the image is quickly lost. You can use image resampling to smooth out these zooming artifacts.

Zoom in on the bright spot in the center of the original image. (The indexing into A is to center this
bright spot in the image so that subsequent zooming does not push it out of the frame.)

imshow(A(1:570,10:600,:),'InitialMagnification','fit')
zoom(10)
title('Original Image, 10x Zoom')
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Query the interpolant F to reproduce this zoomed image (approximately) with 10x higher resolution.
Compare the results from several different interpolation methods.

xq = (1:0.1:sx)';
yq = (1:0.1:sy)';
zq = (1:sz)';
figure
F.Method = 'linear';
vq = uint8(F({xq,yq,zq}));
imshow(vq(1:5700,150:5900,:),'InitialMagnification','fit')
zoom(10)
title('Linear method')
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figure
F.Method = 'cubic';
vq = uint8(F({xq,yq,zq}));
imshow(vq(1:5700,150:5900,:),'InitialMagnification','fit')
zoom(10)
title('Cubic method')
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figure
F.Method = 'spline';
vq = uint8(F({xq,yq,zq}));
imshow(vq(1:5700,150:5900,:),'InitialMagnification','fit')
zoom(10)
title('Spline method')
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See Also
griddedInterpolant | imshow

More About
• “Interpolating Gridded Data” on page 8-4
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Optimization

• “Optimizing Nonlinear Functions” on page 9-2
• “Curve Fitting via Optimization” on page 9-7
• “Set Optimization Options” on page 9-10
• “Optimization Solver Iterative Display” on page 9-13
• “Optimization Solver Output Functions” on page 9-14
• “Optimization Solver Plot Functions” on page 9-20
• “Optimize Live Editor Task” on page 9-22
• “Optimization Troubleshooting and Tips” on page 9-28
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Optimizing Nonlinear Functions
In this section...
“Minimizing Functions of One Variable” on page 9-2
“Minimizing Functions of Several Variables” on page 9-3
“Maximizing Functions” on page 9-4
“fminsearch Algorithm” on page 9-4
“Reference” on page 9-6

Minimizing Functions of One Variable
Given a mathematical function of a single variable, you can use the fminbnd function to find a local
minimizer of the function in a given interval. For example, consider the humps.m function, which is
provided with MATLAB®. The following figure shows the graph of humps.

x = -1:.01:2;
y = humps(x);
plot(x,y)
xlabel('x')
ylabel('humps(x)')
grid on

To find the minimum of the humps function in the range (0.3,1), use
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x = fminbnd(@humps,0.3,1)

x = 0.6370

You can see details of the solution process by using optimset to create options with the Display
option set to 'iter'. Pass the resulting options to fminbnd.

options = optimset('Display','iter');
x = fminbnd(@humps,0.3,1,options)

 
 Func-count     x          f(x)         Procedure
    1       0.567376      12.9098        initial
    2       0.732624      13.7746        golden
    3       0.465248      25.1714        golden
    4       0.644416      11.2693        parabolic
    5         0.6413      11.2583        parabolic
    6       0.637618      11.2529        parabolic
    7       0.636985      11.2528        parabolic
    8       0.637019      11.2528        parabolic
    9       0.637052      11.2528        parabolic
 
Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04 

x = 0.6370

The iterative display shows the current value of x and the function value at f(x) each time a function
evaluation occurs. For fminbnd, one function evaluation corresponds to one iteration of the
algorithm. The last column shows the procedure fminbnd uses at each iteration, a golden section
search or a parabolic interpolation. For details, see “Optimization Solver Iterative Display” on page 9-
13.

Minimizing Functions of Several Variables
The fminsearch function is similar to fminbnd except that it handles functions of many variables.
Specify a starting vector x0 rather than a starting interval. fminsearch attempts to return a vector x
that is a local minimizer of the mathematical function near this starting vector.

To try fminsearch, create a function three_var of three variables, x, y, and z.

function b = three_var(v)
x = v(1);
y = v(2);
z = v(3);
b = x.^2 + 2.5*sin(y) - z^2*x^2*y^2;

Now find a minimum for this function using x = -0.6, y = -1.2, and z = 0.135 as the starting
values.

v = [-0.6,-1.2,0.135];
a = fminsearch(@three_var,v)

a =
    0.0000   -1.5708    0.1803

 Optimizing Nonlinear Functions

9-3



Maximizing Functions
The fminbnd and fminsearch solvers attempt to minimize an objective function. If you have a
maximization problem, that is, a problem of the form

max
x

f (x),

then define g(x) = –f(x), and minimize g.

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate:

[x fval] = fminbnd(@(x)-tan(cos(x)),3,8)

x =
    6.2832

fval =
   -1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at x = 6.2832. This answer is
correct since, to five digits, the maximum is tan(1) = 1.5574, which occurs at x = 2π = 6.2832.

fminsearch Algorithm
fminsearch uses the Nelder-Mead simplex algorithm as described in Lagarias et al. [1]. This
algorithm uses a simplex of n + 1 points for n-dimensional vectors x. The algorithm first makes a
simplex around the initial guess x0 by adding 5% of each component x0(i) to x0. The algorithm uses
these n vectors as elements of the simplex in addition to x0. (The algorithm uses 0.00025 as
component i if x0(i) = 0.) Then, the algorithm modifies the simplex repeatedly according to the
following procedure.

Note The keywords for the fminsearch iterative display appear in bold after the description of the
step.

1 Let x(i) denote the list of points in the current simplex, i = 1,...,n + 1.
2 Order the points in the simplex from lowest function value f(x(1)) to highest f(x(n + 1)). At each

step in the iteration, the algorithm discards the current worst point x(n + 1), and accepts another
point into the simplex. [Or, in the case of step 7 below, it changes all n points with values above
f(x(1))].

3 Generate the reflected point

r = 2m – x(n + 1), (9-1)

where

m = Σx(i)/n, i = 1...n, (9-2)

and calculate f(r).
4 If f(x(1)) ≤ f(r) < f(x(n)), accept r and terminate this iteration. Reflect
5 If f(r) < f(x(1)), calculate the expansion point s
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s = m + 2(m – x(n + 1)), (9-3)

and calculate f(s).

a If f(s) < f(r), accept s and terminate the iteration. Expand
b Otherwise, accept r and terminate the iteration. Reflect

6 If f(r) ≥ f(x(n)), perform a contraction between m and eitherx(n + 1) or r, depending on which
has the lower objective function value.

a If f(r) < f(x(n + 1)) (that is, r is better than x(n + 1)), calculate

c = m + (r – m)/2 (
9
-
4
)

and calculate f(c). If f(c) < f(r), accept c and terminate the iteration. Contract outside

Otherwise, continue with Step 7 (Shrink).
b If f(r) ≥ f(x(n + 1)), calculate

cc = m + (x(n + 1) – m)/2 (
9
-
5
)

and calculate f(cc). If f(cc) < f(x(n + 1)), accept cc and terminate the iteration. Contract
inside

Otherwise, continue with Step 7 (Shrink).
7 Calculate the n points

v(i) = x(1) + (x(i) – x(1))/2 (9-6)

and calculate f(v(i)), i = 2,...,n + 1. The simplex at the next iteration is x(1), v(2),...,v(n + 1).
Shrink

The following figure shows the points that fminsearch can calculate in the procedure, along with
each possible new simplex. The original simplex has a bold outline. The iterations proceed until they
meet a stopping criterion.
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Reference

[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. “Convergence Properties of the Nelder-
Mead Simplex Method in Low Dimensions.” SIAM Journal of Optimization, Vol. 9, Number 1,
1998, pp. 112–147.

See Also

More About
• “Optimization Troubleshooting and Tips” on page 9-28
• “Nonlinear Optimization” (Optimization Toolbox)
• “Curve Fitting via Optimization” on page 9-7
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Curve Fitting via Optimization
This example shows how to fit a nonlinear function to data. For this example, the nonlinear function is
the standard exponential decay curve

y(t) = Aexp(− λt),

where y(t) is the response at time t, and A and λ are the parameters to fit. Fitting the curve means
finding parameters A and λ that minimize the sum of squared errors

∑
i = 1

n
yi− Aexp(− λti) 2,

where the times are ti and the responses are yi, i = 1, …, n. The sum of squared errors is the objective
function.

Create Sample Data

Usually, you have data from measurements. For this example, create artificial data based on a model
with A = 40 and λ = 0 . 5, with normally distributed pseudorandom errors.

rng default % for reproducibility
tdata = 0:0.1:10;
ydata = 40*exp(-0.5*tdata) + randn(size(tdata));

Write Objective Function

Write a function that accepts parameters A and lambda and data tdata and ydata, and returns the
sum of squared errors for the model y(t). Put all the variables to optimize (A and lambda) in a single
vector variable (x). For more information, see “Minimizing Functions of Several Variables” on page 9-
3.

type sseval

function sse = sseval(x,tdata,ydata)
A = x(1);
lambda = x(2);
sse = sum((ydata - A*exp(-lambda*tdata)).^2);

Save this objective function as a file named sseval.m on your MATLAB® path.

The fminsearch solver applies to functions of one variable, x. However, the sseval function has
three variables. The extra variables tdata and ydata are not variables to optimize, but are data for
the optimization. Define the objective function for fminsearch as a function of x alone:

fun = @(x)sseval(x,tdata,ydata);

For information about including extra parameters such as tdata and ydata, see “Parameterizing
Functions” on page 10-2.

Find the Best Fitting Parameters

Start from a random positive set of parameters x0, and have fminsearch find the parameters that
minimize the objective function.
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x0 = rand(2,1);
bestx = fminsearch(fun,x0)

bestx = 2×1

   40.6877
    0.4984

The result bestx is reasonably near the parameters that generated the data, A = 40 and lambda =
0.5.

Check the Fit Quality

To check the quality of the fit, plot the data and the resulting fitted response curve. Create the
response curve from the returned parameters of your model.

A = bestx(1);
lambda = bestx(2);
yfit = A*exp(-lambda*tdata);
plot(tdata,ydata,'*');
hold on
plot(tdata,yfit,'r');
xlabel('tdata')
ylabel('Response Data and Curve')
title('Data and Best Fitting Exponential Curve')
legend('Data','Fitted Curve')
hold off
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See Also

More About
• “Optimizing Nonlinear Functions” on page 9-2
• “Nonlinear Data-Fitting” (Optimization Toolbox)
• “Nonlinear Regression” (Statistics and Machine Learning Toolbox)
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Set Optimization Options

In this section...
“How to Set Options” on page 9-10
“Options Table” on page 9-10
“Tolerances and Stopping Criteria” on page 9-11
“Output Structure” on page 9-12

How to Set Options
You can specify optimization parameters using an options structure that you create using the
optimset function. You then pass options as an input to the optimization function, for example, by
calling fminbnd with the syntax

x = fminbnd(fun,x1,x2,options)

or fminsearch with the syntax

x = fminsearch(fun,x0,options)

For example, to display output from the algorithm at each iteration, set the Display option to
'iter':

options = optimset('Display','iter');

Options Table
Option Description Solvers
Display A flag indicating whether intermediate steps appear on

the screen.

• 'notify' (default) displays output only if the
function does not converge.

• 'iter' displays intermediate steps (not available
with lsqnonneg). See “Optimization Solver
Iterative Display” on page 9-13.

• 'off' or 'none' displays no intermediate steps.
• 'final' displays just the final output.

fminbnd,
fminsearch, fzero,
lsqnonneg

FunValCheck Check whether objective function values are valid.

• 'on' displays an error when the objective function
or constraints return a value that is complex or NaN.

• 'off' (default) displays no error.

fminbnd,
fminsearch, fzero

MaxFunEvals The maximum number of function evaluations allowed.
The default value is 500 for fminbnd and
200*length(x0) for fminsearch.

fminbnd,
fminsearch
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Option Description Solvers
MaxIter The maximum number of iterations allowed. The default

value is 500 for fminbnd and 200*length(x0) for
fminsearch.

fminbnd,
fminsearch

OutputFcn Display information on the iterations of the solver. The
default is [] (none). See “Optimization Solver Output
Functions” on page 9-14.

fminbnd,
fminsearch, fzero

PlotFcns Plot information on the iterations of the solver. The
default is [] (none). For available predefined functions,
see “Optimization Solver Plot Functions” on page 9-
20.

fminbnd,
fminsearch, fzero

TolFun The termination tolerance for the function value. The
default value is 1.e-4. See “Tolerances and Stopping
Criteria” on page 9-11.

fminsearch

TolX The termination tolerance for x. The default value is
1.e-4, except for fzero, which has a default value of
eps (= 2.2204e-16), and lsqnonneg, which has a
default value of 10*eps*norm(c,1)*length(c). See
“Tolerances and Stopping Criteria” on page 9-11.

fminbnd,
fminsearch, fzero,
lsqnonneg

Tolerances and Stopping Criteria
The number of iterations in an optimization depends on the stopping criteria for the solver. These
criteria include several tolerances you can set. Generally, a tolerance is a threshold which, if crossed,
stops the iterations of a solver.

Tip Generally, set the TolFun and TolX tolerances to well above eps, and usually above 1e-14.
Setting small tolerances does not guarantee accurate results. Instead, a solver can fail to recognize
when it has converged, and can continue futile iterations. A tolerance value smaller than eps
effectively disables that stopping condition. This tip does not apply to fzero, which uses a default
value of eps for TolX.

• TolX is a lower bound on the size of a step, meaning the norm of (xi – xi+1). If the solver attempts
to take a step that is smaller than TolX, the iterations end. Solvers generally use TolX as a
relative bound, meaning iterations end when |(xi – xi+1)| < TolX*(1 + |xi|), or a similar relative
measure.

 Set Optimization Options

9-11



• TolFun is a lower bound on the change in the value of the objective function during a step. If |
f(xi) – f(xi+1)| < TolFun, the iterations end. Solvers generally use TolFun as a relative bound,
meaning iterations end when |f(xi) – f(xi+1)| < TolFun(1 + |f(xi)|), or a similar relative measure.

• MaxIter is a bound on the number of solver iterations. MaxFunEvals is a bound on the number
of function evaluations.

Note Unlike other solvers, fminsearch stops when it satisfies both TolFun and TolX.

Output Structure
The output structure includes the number of function evaluations, the number of iterations, and the
algorithm. The structure appears when you provide fminbnd, fminsearch, or fzero with a fourth
output argument, as in

[x,fval,exitflag,output] = fminbnd(@humps,0.3,1);

The details of the output structure for each solver are on the function reference pages.

The output structure is not an option that you choose with optimset. It is an optional output for
fminbnd, fminsearch, and fzero.

See Also

More About
• “Optimizing Nonlinear Functions” on page 9-2
• “Optimization Solver Output Functions” on page 9-14
• “Optimization Solver Plot Functions” on page 9-20
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Optimization Solver Iterative Display
You obtain details of the steps solvers take by setting the Display option to 'iter' with optimset.
The displayed output contains headings and items from the following list.

Heading Information Displayed Solvers
Iteration Iteration number, meaning the number of steps the

algorithm has taken
fminsearch

Func-count Cumulative number of function evaluations fminbnd,
fminsearch, fzero

x Current point fminbnd, fzero
f(x) Current objective function value fminbnd, fzero
min f(x) Smallest objective function value found fminsearch
Procedure Algorithm used during the iteration

• initial
• golden (golden section search)
• parabolic (parabolic interpolation)

fminbnd

• initial simplex
• expand
• reflect
• shrink
• contract inside
• contract outside

For details, see “fminsearch Algorithm” on page 9-4.

fminsearch

• initial (initial point)
• search (search for an interval containing a zero)
• bisection
• interpolation (linear interpolation or inverse

quadratic interpolation)

fzero

a, f(a), b, f(b) Search points and their function values while looking
for an interval with function values of opposite signs

fzero

See Also

More About
• “Set Optimization Options” on page 9-10
• “Optimization Solver Output Functions” on page 9-14
• “Optimization Solver Plot Functions” on page 9-20
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Optimization Solver Output Functions
In this section...
“What Is an Output Function?” on page 9-14
“Creating and Using an Output Function” on page 9-14
“Structure of the Output Function” on page 9-15
“Example of a Nested Output Function” on page 9-15
“Fields in optimValues” on page 9-17
“States of the Algorithm” on page 9-17
“Stop Flag” on page 9-18

What Is an Output Function?
An output function is a function that an optimization function calls at each iteration of its algorithm.
Typically, you use an output function to generate graphical output, record the history of the data the
algorithm generates, or halt the algorithm based on the data at the current iteration. You can create
an output function as a function file, a local function, or a nested function.

You can use the OutputFcn option with the following MATLAB optimization functions:

• fminbnd
• fminsearch
• fzero

Creating and Using an Output Function
The following is a simple example of an output function that plots the points generated by an
optimization function.

function stop = outfun(x, optimValues, state)
stop = false;
hold on;
plot(x(1),x(2),'.');
drawnow

You can use this output function to plot the points generated by fminsearch in solving the
optimization problem

min
x

f (x) = min
x

ex1 4x1
2 + 2x2

2 + x1x2 + 2x2 .

To do so,

1 Create a file containing the preceding code and save it as outfun.m in a folder on the MATLAB
path.

2 Set the value of the Outputfcn field of the options structure to a function handle to outfun.

options = optimset('OutputFcn', @outfun);
3 Enter the following commands:
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hold on
objfun=@(x) exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
[x fval] = fminsearch(objfun, [-1 1], options)
hold off

These commands return the solution

x =
    0.1290   -0.5323

fval =
   -0.5689

and display the following plot of the points generated by fminsearch:

Structure of the Output Function
The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• stop is a flag that is true or false depending on whether the optimization routine halts or
continues. See “Stop Flag” on page 9-18.

• x is the point computed by the algorithm at the current iteration.
• optimValues is a structure containing data from the current iteration. “Fields in optimValues” on

page 9-17 describes the structure in detail.
• state is the current state of the algorithm. “States of the Algorithm” on page 9-17 lists the

possible values.

The optimization function passes the values of the input arguments to outfun at each iteration.

Example of a Nested Output Function
The example in “Creating and Using an Output Function” on page 9-14 does not require the output
function to preserve data from one iteration to the next. When you do not need to save data between
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iterations, you can write the output function as a function file and call the optimization function
directly from the command line. However, to have an output function to record data from one
iteration to the next, write a single file that does the following:

• Contains the output function as a nested function—see “Nested Functions” in MATLAB
Programming Fundamentals for more information.

• Calls the optimization function.

In the following example, the function file also contains the objective function as a local function. You
can instead write the objective function as a separate file or as an anonymous function.

Nested functions have access to variables in the surrounding file. Therefore, this method enables the
output function to preserve variables from one iteration to the next.

The following example uses an output function to record the fminsearch iterates in solving

min
x

f (x) = min
x

ex1 4x1
2 + 2x2

2 + x1x2 + 2x2 .

The output function returns the sequence of points as a matrix called history.

To run the example, do the following steps:

1 Open a new file in the MATLAB Editor.
2 Copy and paste the following code into the file.

function [x fval history] = myproblem(x0)
    history = [];
    options = optimset('OutputFcn', @myoutput);
    [x fval] = fminsearch(@objfun, x0,options);
        
    function stop = myoutput(x,optimvalues,state);
        stop = false;
        if isequal(state,'iter')
          history = [history; x];
        end
    end
    
    function z = objfun(x)
      z = exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
    end
end

3 Save the file as myproblem.m in a folder on the MATLAB path.
4 At the MATLAB prompt, enter

[x fval history] = myproblem([-1 1]);

The function fminsearch returns x, the optimal point, and fval, the value of the objective function
at x.

x,fval

x =
    0.1290   -0.5323

fval =
   -0.5689
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In addition, the output function myoutput returns the matrix history, which contains the points
generated by the algorithm at each iteration, to the MATLAB workspace. The first four rows of
history are

history(1:4,:)

ans =

   -1.0000    1.0000
   -1.0000    1.0000
   -1.0750    0.9000
   -1.0125    0.8500

The final row of points in history is the same as the optimal point, x.

history(end,:)

ans =

    0.1290   -0.5323

objfun(history(end,:))

ans =

   -0.5689

Fields in optimValues
The following table lists the fields of the optimValues structure that are provided by the
optimization functions fminbnd, fminsearch, and fzero.

The “Command-Line Display Headings” column of the table lists the headings that appear when you
set the Display parameter of options to 'iter'.

optimValues Field
(optimValues.field)

Description Command-Line Display
Heading

funccount Cumulative number of function
evaluations

Func-count

fval Function value at current point min f(x)
iteration Iteration number — starts at 0 Iteration
procedure Procedure messages Procedure

States of the Algorithm
The following table lists the possible values for state:

State Description
'init' The algorithm is in the initial state before the first iteration.
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State Description
'interrupt' The algorithm is performing an iteration. In this state, the

output function can halt the current iteration of the
optimization. You might want the output function to halt the
iteration to improve the efficiency of the computations. When
state is set to 'interrupt', the values of x and
optimValues are the same as at the last call to the output
function, in which state is set to 'iter'.

'iter' The algorithm is at the end of an iteration.
'done' The algorithm is in the final state after the last iteration.

The following code illustrates how the output function uses the value of state to decide which tasks
to perform at the current iteration.

switch state
    case 'init'
          % Setup for plots or dialog boxes
    case 'iter'
          % Make updates to plots or dialog boxes as needed
    case 'interrupt'
          % Check conditions to see whether optimization 
          % should quit
    case 'done'
          % Cleanup of plots, dialog boxes, or final plot
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the optimization function
whether the optimization halts (true) or continues (false). The following examples show typical
ways to use the stop flag.

Stopping an Optimization Based on Data in optimValues

The output function can stop an optimization at any iteration based on the current data in
optimValues. For example, the following code sets stop to true if the objective function value is
less than 5:

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if objective function is less than 5.
if optimValues.fval < 5
    stop = true;
end

Stopping an Optimization Based on Dialog Box Input

If you design a UI to perform optimizations, you can have the output function stop an optimization
with, for example, a Stop button. The following code shows how to do this callback. The code
assumes that the Stop button callback stores the value true in the optimstop field of a handles
structure called hObject stored in appdata.

function stop = myoutput(x, optimValues, state)
stop = false;
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% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

See Also

More About
• “Optimization Solver Plot Functions” on page 9-20
• “Set Optimization Options” on page 9-10
• “Optimization Solver Iterative Display” on page 9-13
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Optimization Solver Plot Functions
In this section...
“What Is a Plot Function?” on page 9-20
“Example: Plot Function” on page 9-20

What Is a Plot Function?
The PlotFcns field of the options structure specifies one or more functions that an optimization
function calls at each iteration to plot various measures of progress. Pass a function handle or cell
array of function handles. The structure of a plot function is the same as the structure of an output
function. For more information on this structure, see “Optimization Solver Output Functions” on page
9-14.

You can use the PlotFcns option with the following MATLAB optimization functions:

• fminbnd
• fminsearch
• fzero

The predefined plot functions for these optimization functions are:

• @optimplotx plots the current point
• @optimplotfval plots the function value
• @optimplotfunccount plots the function count (not available for fzero)

To view or modify a predefined plot function, open the function file in the MATLAB Editor. For
example, to view the function file for plotting the current point, enter:

edit optimplotx.m

Example: Plot Function
View the progress of a minimization using fminsearch with the plot function @optimplotfval:

1 Write a file for the objective function. For this example, use:

function f = onehump(x)

r = x(1)^2 + x(2)^2;
s = exp(-r);
f = x(1)*s+r/20;

2 Set the options to use the plot function:

options = optimset('PlotFcns',@optimplotfval);
3 Call fminsearch starting from [2,1]:

[x ffinal] = fminsearch(@onehump,[2,1],options)
4 MATLAB returns the following:

x =
   -0.6691    0.0000
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ffinal =
   -0.4052

See Also

More About
• “Optimization Solver Output Functions” on page 9-14
• “Set Optimization Options” on page 9-10
• “Optimization Solver Iterative Display” on page 9-13
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Optimize Live Editor Task
In this section...
“What Is the Optimize Live Editor Task?” on page 9-22
“Minimize a Nonlinear Function of Several Variables” on page 9-23
“Solve a Scalar Equation” on page 9-25

What Is the Optimize Live Editor Task?
The Optimize Live Editor task provides a visual interface for the fminbnd, fminsearch, fzero, and
lsqnonneg solvers. To start the task, click the New Live Script button. Then click the Insert tab
and select Task > Optimize.
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Minimize a Nonlinear Function of Several Variables
This example shows how to use the Optimize Live Editor task to minimize the function
f (x, y) = 100 y − x2 2 + a− x 2 where the variable a = π using the Optimize Live Editor task.

For a video describing a similar optimization problem, see How to Use the Optimize Live Editor Task.

1 On the Home tab, in the File section, click the New Live Script button.
2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select

Task > Optimize.

3 For use in entering problem data, click the Section Break button. New sections appear above
and below the task.

4 In the section above the Optimize task, enter the following code.

a = pi;
x0 = [-1 2];

5 To place these variables into the workspace, press Ctrl + Enter.
6 In the Specify problem type section of the task, click the Objective > Nonlinear button and

the Constraints > Unconstrained button. The task shows that the recommended solver is
fminsearch.

Note If you have Optimization Toolbox™, your recommended solver at this point is different.
Choose fminsearch to proceed with the example.
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7 In the Select problem data section, select Objective function > Local function and then
click the New button. A function script appears in a new section below the task. Edit the
resulting code to contain the following uncommented lines.

function f = objectiveFcn(optimInput,a)
x = optimInput(1);
y = optimInput(2);
f = 100*(y - x^2)^2 + (a - x)^2;
end

8 In the Select problem data section, select objectiveFcn as the local function.
9 In the Select problem data section, under Function inputs, select Optimization input >

optimInput and Fixed input: a > a.

10 Select Initial point (x0) > x0.
11 In the Display progress section, select Objective value for the plot.
12 To run the solver, click the options button ⁝ at the top right of the task window, and select Run

Section.

The following plot appears.
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13 To view the solution point, look at the top of the Optimize task.

The solution and objectiveValue variables are returned to the workspace. To view their
values, insert a section break below the task and enter this code.

disp(solution)
disp(objectiveValue)

14 Run the section by pressing Ctrl+Enter.

disp(solution)

    3.1416    9.8696

disp(objectiveValue)

   3.9946e-11

Solve a Scalar Equation
This example shows how to use the Optimize Live Editor task to find the point x where cos(x) = x.

1 On the Home tab, in the File section, click the New Live Script button. Enter these lines of
code in the live script.
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fun = @(x)cos(x) - x;
x0 = 0;

The first line defines the anonymous function fun, which takes the value 0 at the point x where
cos(x) = x. The second line defines the initial point x0 = 0, where fzero begins its search for a
solution.

2 Put these variables in the MATLAB workspace by pressing Ctrl+Enter.
3 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select

Task > Optimize.
4 In the Specify problem type section of the task, select Solver > fzero.
5 In the Select problem data section, select Objective function > Function handle and then

select fun. Select Initial point (x0) > x0.

6 In the Display progress section, select Objective value for the plot.

7 Run the solver by pressing Ctrl+Enter.
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8 To see the solution value, insert a new section below the task by clicking the Section Break
button on the Insert tab. In the new section, enter solution and press Ctrl+Enter.

solution

solution = 0.7391

See Also
Optimize | fminsearch | fzero

More About
• “Optimization”
• “Add Interactive Tasks to a Live Script”
• How to Use the Optimize Live Editor Task
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Optimization Troubleshooting and Tips
This table describes typical optimization problems and provides recommendations for handling them.

Problem Recommendation
The solution found by fminbnd or
fminsearch is not a global minimum. A global
minimum has the smallest objective function
value among all points in the search space.

There is no guarantee that a solution is a global minimum
unless your problem is continuous and has only one minimum.
To search for a global minimum, start the optimization from
multiple starting points (or intervals, in the case of fminbnd).

It is impossible to evaluate the objective
function f(x) at some points x. Such points
are called infeasible.

Modify your function to return a large positive value for f(x)
at infeasible points x.

The minimization routine appears to enter an
infinite loop or returns a solution that is not a
minimum (or not a zero, in the case of fzero).

Perhaps your objective function returns NaN or complex
values. Solvers expect only real objective function values. Any
other values can cause unexpected results. To determine
whether there are NaN or complex values, set

options = optimset('FunValCheck','on')

and call the optimization function with options as an input
argument. If an objective function returns a NaN or complex
value, this setting causes the solver to throw an error.

The solver takes a long time. Most optimization problems benefit from good starting points.
Try random starting points in a region that might be close to a
solution, based on your problem characteristics.

Sometimes you can solve a complicated problem using an
evolutionary approach. First, solve problems with a smaller
number of independent variables. Use solutions from these
simpler problems as starting points for more complicated
problems by using an appropriate mapping. Also, you can
sometimes speed the solution by using simpler objective
functions and less stringent stopping conditions in the initial
stages of an optimization problem.

It is unclear what the solver is doing. To see what the solver is doing as it iterates:

• Monitor the iterations using a plot function such as
@optimplotfval. Use optimset to set the PlotFcns
option. See “Optimization Solver Plot Functions” on page 9-
20.

• Set the Display option to display information at the
command line. See “Optimization Solver Iterative Display”
on page 9-13.

9 Optimization

9-28



Problem Recommendation
fminsearch fails to reach a solution. fminsearch can fail to reach a solution for various reasons.

• Poor scaling. If your problem is not adequately centered
and scaled, the solver can fail to converge correctly. Try to
have each coordinate give roughly the same effect on the
objective function, and ensure that the scale of each
coordinate near a possible solution is not too large or small.
To do so, edit the objective function and add or multiply
appropriate constants for each coordinate.

• Inappropriate stopping criteria. If the value you specify for
TolFun or TolX is too small, fminsearch can fail to
realize when it has reached a solution. If the value is too
large, fminsearch can halt far from a solution.

• Poor initial point. Try starting fminsearch from various
initial points.

• Insufficient iterations. If the solver runs out of iterations or
gets stuck, try restarting fminsearch from its final point
to reach a better solution. Sometimes fminsearch reaches
a better solution when you increase the value of the
MaxFunEvals and MaxIter options from their default of
200*length(x0).

See Also

More About
• “Optimizing Nonlinear Functions” on page 9-2
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Parameterizing Functions
In this section...
“Overview” on page 10-2
“Parameterizing Using Nested Functions” on page 10-2
“Parameterizing Using Anonymous Functions” on page 10-3

Overview
This topic explains how to store or access extra parameters for mathematical functions that you pass
to MATLAB function functions, such as fzero or integral.

MATLAB function functions evaluate mathematical expressions over a range of values. They are
called function functions because they are functions that accept a function handle (a pointer to a
function) as an input. Each of these functions expects that your objective function has a specific
number of input variables. For example, fzero and integral accept handles to functions that have
exactly one input variable.

Suppose you want to find the zero of the cubic polynomial x3 + bx + c for different values of the
coefficients b and c. Although you could create a function that accepts three input variables (x, b, and
c), you cannot pass a function handle that requires all three of those inputs to fzero. However, you
can take advantage of properties of anonymous or nested functions to define values for additional
inputs.

Parameterizing Using Nested Functions
One approach for defining parameters is to use a nested function—a function completely contained
within another function in a program file. For this example, create a file named findzero.m that
contains a parent function findzero and a nested function poly:

function y = findzero(b,c,x0)

y = fzero(@poly,x0);

   function y = poly(x)
   y = x^3 + b*x + c;
   end
end

The nested function defines the cubic polynomial with one input variable, x. The parent function
accepts the parameters b and c as input values. The reason to nest poly within findzero is that
nested functions share the workspace of their parent functions. Therefore, the poly function can
access the values of b and c that you pass to findzero.

To find a zero of the polynomial with b = 2 and c = 3.5, using the starting point x0 = 0, you can
call findzero from the command line:

x = findzero(2,3.5,0)

x =
   -1.0945
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Parameterizing Using Anonymous Functions
Another approach for accessing extra parameters is to use an anonymous function. Anonymous
functions are functions that you can define in a single command, without creating a separate program
file. They can use any variables that are available in the current workspace.

For example, create a handle to an anonymous function that describes the cubic polynomial, and find
the zero:

b = 2;
c = 3.5;
cubicpoly = @(x) x^3 + b*x + c;
x = fzero(cubicpoly,0)

x =
   -1.0945

Variable cubicpoly is a function handle for an anonymous function that has one input, x. Inputs for
anonymous functions appear in parentheses immediately following the @ symbol that creates the
function handle. Because b and c are in the workspace when you create cubicpoly, the anonymous
function does not require inputs for those coefficients.

You do not need to create an intermediate variable, cubicpoly, for the anonymous function. Instead,
you can include the entire definition of the function handle within the call to fzero:

b = 2;
c = 3.5;
x = fzero(@(x) x^3 + b*x + c,0)

x =
   -1.0945

You also can use anonymous functions to call more complicated objective functions that you define in
a function file. For example, suppose you have a file named cubicpoly.m with this function
definition:

function y = cubicpoly(x,b,c)
y = x^3 + b*x + c;
end

At the command line, define b and c, and then call fzero with an anonymous function that invokes
cubicpoly:

b = 2;
c = 3.5;
x = fzero(@(x) cubicpoly(x,b,c),0)

x =
   -1.0945

Note To change the values of the parameters, you must create a new anonymous function. For
example:

b = 10;
c = 25;
x = fzero(@(x) x^3 + b*x + c,0);
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See Also

More About
• “Create Function Handle”
• “Nested Functions”
• “Anonymous Functions”
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Ordinary Differential Equations (ODEs)

• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-10
• “ODE Event Location” on page 11-12
• “Solve Nonstiff ODEs” on page 11-18
• “Solve Stiff ODEs” on page 11-22
• “Solve Differential Algebraic Equations (DAEs)” on page 11-29
• “Nonnegative ODE Solution” on page 11-34
• “Troubleshoot Common ODE Problems” on page 11-37
• “Differential Equations” on page 11-42
• “Solve Predator-Prey Equations” on page 11-51
• “Solve Equations of Motion for Baton Thrown into Air” on page 11-55
• “Solve ODE with Strongly State-Dependent Mass Matrix” on page 11-61
• “Solve Stiff Transistor Differential Algebraic Equation” on page 11-73
• “Solve System of ODEs with Multiple Initial Conditions” on page 11-78
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Choose an ODE Solver

Ordinary Differential Equations
An ordinary differential equation (ODE) contains one or more derivatives of a dependent variable, y,
with respect to a single independent variable, t, usually referred to as time. The notation used here
for representing derivatives of y with respect to t is y′ for a first derivative, y′′ for a second derivative,
and so on. The order of the ODE is equal to the highest-order derivative of y that appears in the
equation.

For example, this is a second order ODE:

y′′ = 9y

In an initial value problem, the ODE is solved by starting from an initial state. Using the initial
condition, y0, as well as a period of time over which the answer is to be obtained, t0, tf , the solution
is obtained iteratively. At each step the solver applies a particular algorithm to the results of previous
steps. At the first such step, the initial condition provides the necessary information that allows the
integration to proceed. The final result is that the ODE solver returns a vector of time steps
t = t0, t1, t2, ..., tf  as well as the corresponding solution at each step y = y0, y1, y2, ..., yf .

Types of ODEs
The ODE solvers in MATLAB solve these types of first-order ODEs:

• Explicit ODEs of the form y′ = f t, y .
• Linearly implicit ODEs of the form M t, y y′ = f t, y , where M t, y  is a nonsingular mass matrix.

The mass matrix can be time- or state-dependent, or it can be a constant matrix. Linearly implicit
ODEs involve linear combinations of the first derivative of y, which are encoded in the mass
matrix.

Linearly implicit ODEs can always be transformed to an explicit form, y′ = M−1 t, y f t, y .
However, specifying the mass matrix directly to the ODE solver avoids this transformation, which
is inconvenient and can be computationally expensive.

• If some components of y′ are missing, then the equations are called differential algebraic
equations, or DAEs, and the system of DAEs contains some algebraic variables. Algebraic
variables are dependent variables whose derivatives do not appear in the equations. A system of
DAEs can be rewritten as an equivalent system of first-order ODEs by taking derivatives of the
equations to eliminate the algebraic variables. The number of derivatives needed to rewrite a DAE
as an ODE is called the differential index. The ode15s and ode23t solvers can solve index-1
DAEs.

• Fully implicit ODEs of the form f t, y, y′ = 0. Fully implicit ODEs cannot be rewritten in an explicit
form, and might also contain some algebraic variables. The ode15i solver is designed for fully
implicit problems, including index-1 DAEs.

You can supply additional information to the solver for some types of problems by using the odeset
function to create an options structure.
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Systems of ODEs
You can specify any number of coupled ODE equations to solve, and in principle the number of
equations is only limited by available computer memory. If the system of equations has n equations,

y′1
y′2
⋮
y′n

=

f1 t, y1, y2, ..., yn
f2 t, y1, y2, ..., yn

⋮
fn t, y1, y2, ..., yn

,

then the function that encodes the equations returns a vector with n elements, corresponding to the
values for y′1, y′2, … , y′n. For example, consider the system of two equations

y′1 = y2
y′2 = y1 y2− 2 .

A function that encodes these equations is

function dy = myODE(t,y)
dy(1) = y(2);
dy(2) = y(1)*y(2)-2;

Higher-Order ODEs
The MATLAB ODE solvers only solve first-order equations. You must rewrite higher-order ODEs as an
equivalent system of first-order equations using the generic substitutions

y1 = y
y2 = y′
y3 = y′′
⋮

yn = y(n− 1) .

The result of these substitutions is a system of n first-order equations

y′1 = y2
y′2 = y3

⋮
y′n = f t, y1, y2, ..., yn .

For example, consider the third-order ODE

y′′′− y′′y + 1 = 0.

Using the substitutions

y1 = y
y2 = y′
y3 = y′′
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results in the equivalent first-order system

y′1 = y2
y′2 = y3
y′3 = y1 y3− 1.

The code for this system of equations is then

function dydt = f(t,y)
dydt(1) = y(2);
dydt(2) = y(3);
dydt(3) = y(1)*y(3)-1;

Complex ODEs
Consider the complex ODE equation

y′ = f t, y ,

where y = y1 + iy2. To solve it, separate the real and imaginary parts into different solution
components, then recombine the results at the end. Conceptually, this looks like

yv = Real y Imag y
fv = Real f t, y Imag f t, y .

For example, if the ODE is y′ = yt + 2i, then you can represent the equation using a function file.

function f = complexf(t,y)
% Define function that takes and returns complex values
f = y.*t + 2*i;

Then, the code to separate the real and imaginary parts is

function fv = imaginaryODE(t,yv)
% Construct y from the real and imaginary components
y = yv(1) + i*yv(2);            

% Evaluate the function
yp = complexf(t,y);             

% Return real and imaginary in separate components
fv = [real(yp); imag(yp)];      

When you run a solver to obtain the solution, the initial condition y0 is also separated into real and
imaginary parts to provide an initial condition for each solution component.

y0 = 1+i;
yv0 = [real(y0); imag(y0)];
tspan = [0 2];
[t,yv] = ode45(@imaginaryODE, tspan, yv0);

Once you obtain the solution, combine the real and imaginary components together to obtain the final
result.

y = yv(:,1) + i*yv(:,2);
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Basic Solver Selection
ode45 performs well with most ODE problems and should generally be your first choice of solver.
However, ode23 and ode113 can be more efficient than ode45 for problems with looser or tighter
accuracy requirements.

Some ODE problems exhibit stiffness, or difficulty in evaluation. Stiffness is a term that defies a
precise definition, but in general, stiffness occurs when there is a difference in scaling somewhere in
the problem. For example, if an ODE has two solution components that vary on drastically different
time scales, then the equation might be stiff. You can identify a problem as stiff if nonstiff solvers
(such as ode45) are unable to solve the problem or are extremely slow. If you observe that a nonstiff
solver is very slow, try using a stiff solver such as ode15s instead. When using a stiff solver, you can
improve reliability and efficiency by supplying the Jacobian matrix or its sparsity pattern.

This table provides general guidelines on when to use each of the different solvers.

Solver Problem Type Accuracy When to Use
ode45 Nonstiff Medium Most of the time. ode45

should be the first
solver you try.

ode23 Low ode23 can be more
efficient than ode45 at
problems with crude
tolerances, or in the
presence of moderate
stiffness.

ode113 Low to High ode113 can be more
efficient than ode45 at
problems with stringent
error tolerances, or
when the ODE function
is expensive to evaluate.

ode15s Stiff Low to Medium Try ode15s when ode4
5 fails or is inefficient
and you suspect that
the problem is stiff. Also
use ode15s when
solving differential
algebraic equations
(DAEs).
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Solver Problem Type Accuracy When to Use
ode23s Low ode23s can be more

efficient than ode15s at
problems with crude
error tolerances. It can
solve some stiff
problems for
which ode15s is not
effective.

ode23s computes the
Jacobian in each step,
so it is beneficial to
provide the Jacobian via
odeset to maximize
efficiency and accuracy.

If there is a mass
matrix, it must be
constant.

ode23t Low Use ode23t if the
problem is only
moderately stiff and you
need a solution without
numerical damping. 

ode23t can solve
differential algebraic
equations (DAEs).

ode23tb Low Like ode23s, the
ode23tb solver might
be more efficient
than ode15s at
problems with crude
error tolerances.

ode15i Fully implicit Low Use ode15i for fully
implicit problems
f(t,y,y’) = 0 and for
differential algebraic
equations (DAEs) of
index 1.

For details and further recommendations about when to use each solver, see [5].

Summary of ODE Examples and Files
There are several example files available that serve as excellent starting points for most ODE
problems. To run the Differential Equations Examples app, which lets you easily explore and run
examples, type

odeexamples
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To open an individual example file for editing, type

edit exampleFileName.m

To run an example, type

exampleFileName

This table contains a list of the available ODE and DAE example files as well as the solvers and
options they use. Links are included for the subset of examples that are also published directly in the
documentation.

Exampl
e File

Solver
Used

Options Specified Description Documentation Link

amp1da
e

ode23t • 'Mass' Stiff DAE — electrical circuit
with constant, singular mass
matrix

“Solve Stiff Transistor
Differential Algebraic
Equation” on page 11-73

ballod
e

ode23 • 'Events'
• 'OutputFcn'
• 'OutputSel'
• 'Refine'
• 'InitialStep'
• 'MaxStep'

Simple event location —
bouncing ball

“ODE Event Location” on
page 11-12

batono
de

ode45 • 'Mass' ODE with time- and state-
dependent mass matrix —
motion of a baton

“Solve Equations of Motion
for Baton Thrown into Air”
on page 11-55

brusso
de

ode15s • 'JPattern'
• 'Vectorized'

Stiff large problem —
diffusion in a chemical
reaction (the Brusselator)

“Solve Stiff ODEs” on page
11-22

burger
sode

ode15s • 'Mass'
• 'MStateDepend

ence'
• 'JPattern'
• 'MvPattern'
• 'RelTol'
• 'AbsTol'

ODE with strongly state-
dependent mass matrix —
Burgers' equation solved
using a moving mesh
technique

“Solve ODE with Strongly
State-Dependent Mass
Matrix” on page 11-61

fem1od
e

ode15s • 'Mass'
• 'MStateDepend

ence'
• 'Jacobian'

Stiff problem with a time-
dependent mass matrix —
finite element method

—

fem2od
e

ode23s • 'Mass' Stiff problem with a constant
mass matrix — finite element
method

—

hb1ode ode15s — Stiff ODE problem solved on
a very long interval —
Robertson chemical reaction

—
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Exampl
e File

Solver
Used

Options Specified Description Documentation Link

hb1dae ode15s • 'Mass'
• 'RelTol'
• 'AbsTol'
• 'Vectorized'

Stiff, linearly implicit DAE
from a conservation law —
Robertson chemical reaction

“Solve Robertson Problem as
Semi-Explicit Differential
Algebraic Equations (DAEs)”

ihb1da
e

ode15i • 'RelTol'
• 'AbsTol'
• 'Jacobian'

Stiff, fully implicit DAE —
Robertson chemical reaction

“Solve Robertson Problem as
Implicit Differential
Algebraic Equations (DAEs)”

iburge
rsode

ode15i • 'RelTol'
• 'AbsTol'
• 'Jacobian'
• 'JPattern'

Implicit ODE system —
Burgers’ equation

—

kneeod
e

ode15s • 'NonNegative' The “knee problem” with
nonnegativity constraints

“Nonnegative ODE Solution”
on page 11-34

orbito
de

ode45 • 'RelTol'
• 'AbsTol'
• 'Events'
• 'OutputFcn'

Advanced event location —
restricted three body
problem

“ODE Event Location” on
page 11-12

rigido
de

ode45 — Nonstiff problem — Euler
equations of a rigid body
without external forces

“Solve Nonstiff ODEs” on
page 11-18

vdpode ode15s • 'Jacobian' Parameterizable van der Pol
equation (stiff for large μ)

“Solve Stiff ODEs” on page
11-22

References
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See Also
odeset | odextend

More About
• “Solve Nonstiff ODEs” on page 11-18
• “Solve Stiff ODEs” on page 11-22
• “Solve Differential Algebraic Equations (DAEs)” on page 11-29

External Websites
• Ordinary Differential Equations
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Summary of ODE Options
Solving ODEs frequently requires fine-tuning parameters, adjusting error tolerances, or passing
additional information to the solver. This topic shows how to specify options, and which differential
equation solvers each option is compatible with.

Options Syntax
Use the odeset function to create an options structure that you then pass to the solver as the fourth
input argument. For example, to adjust the relative and absolute error tolerances:

opts = odeset('RelTol',1e-2,'AbsTol',1e-5);
[t,y] = ode45(@odefun,tspan,y0,opts);

If you use the command odeset with no inputs, then MATLAB displays a list of the possible values for
each option, with default values indicated by curly braces {}.

The odeget function queries the value of an option in an existing structure, which you can use to
dynamically change option values based on conditions. For example, this code detects whether Stats
is set to 'on', and changes the value if necessary:

if isempty(odeget(opts,'Stats'))
  odeset(opts,'Stats','on')
end

Compatibility of Options with Each Solver
Some options in odeset are generic and compatible with any solver, while others are solver-specific.
This table summarizes the compatibility of each option with the different solvers.

Option ode45 ode23 ode113 ode15s ode23s ode23t ode23tb ode15i
RelTol
AbsTol
NormCon
trol

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OutputF
cn
OutputS
el
Refine
Stats

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NonNega
tive

✓ ✓ ✓ ✓* — ✓* ✓* —

Events ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓**
MaxStep
Initial
Step

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Option ode45 ode23 ode113 ode15s ode23s ode23t ode23tb ode15i
Jacobia
n
JPatter
n
Vectori
zed

— — — ✓ ✓ ✓ ✓ ✓

Mass
MStateD
ependen
ce
MvPatte
rn
MassSin
gular

✓
✓
—
—

✓
✓
—
—

✓
✓
—
—

✓
✓
✓
✓

✓
—
—
—

✓
✓
✓
✓

✓
✓
✓
—

—
—
—
—

Initial
Slope

— — — ✓ — ✓ — —

MaxOrde
r
BDF

— — — ✓ — — — ✓
—

* Use the NonNegative parameter with ode15s, ode23t, and ode23tb only for those problems in
which there is no mass matrix.

** The events function for ode15i must accept a third input argument for yp.

Usage Examples
MATLAB includes several example files that show how to use various options. For example, type edit
ballode to see an example that uses 'Events' to specify an events function, or edit batonode to
see an example that uses 'Mass' to specify a mass matrix. For a complete summary of example files
and which options they use, see “Summary of ODE Examples and Files” on page 11-6.

See Also
odeget | odeset

More About
• “Choose an ODE Solver” on page 11-2
• “ODE Event Location” on page 11-12
• “Nonnegative ODE Solution” on page 11-34
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ODE Event Location

In this section...
“What is Event Location?” on page 11-12
“Writing an Event Function” on page 11-12
“Event Information” on page 11-13
“Limitations” on page 11-13
“Simple Event Location: A Bouncing Ball” on page 11-13
“Advanced Event Location: Restricted Three Body Problem” on page 11-14

What is Event Location?
Part of the difficulty in solving some systems of ODEs is determining an appropriate time to stop the
solution. The final time in the interval of integration might be defined by a specific event and not by a
number. An example is an apple falling from a tree. The ODE solver should stop once the apple hits
the ground, but you might not know when that event would occur beforehand. Similarly, some
problems involve events that do not terminate the solution. An example is a moon orbiting a planet. In
this case you might not want to stop the integration early, but you still want to detect each time the
moon completes one period around the larger body.

Use event functions to detect when certain events occur during the solution of an ODE. Event
functions take an expression that you specify, and detect an event when that expression is equal to
zero. They can also signal the ODE solver to halt integration when they detect an event.

Writing an Event Function
Use the 'Events' option of the odeset function to specify an event function. The event function
must have the general form

[value,isterminal,direction] = myEventsFcn(t,y)

In the case of ode15i, the event function must also accept a third input argument for yp.

The output arguments value, isterminal, and direction are vectors whose ith element
corresponds to the ith event:

• value(i) is a mathematical expression describing the ith event. An event occurs when
value(i) is equal to zero.

• isterminal(i) = 1 if the integration is to terminate when the ith event occurs. Otherwise, it is
0.

• direction(i) = 0 if all zeros are to be located (the default). A value of +1 locates only zeros
where the event function is increasing, and -1 locates only zeros where the event function is
decreasing. Specify direction = [] to use the default value of 0 for all events.

Again, consider the case of an apple falling from a tree. The ODE that represents the falling body is

y′′ = − 1 + y′ 2 ,
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with the initial conditions y 0 = 1 and y′ 0 = 0. You can use an event function to determine when
y t = 0, which is when the apple hits the ground. For this problem, an event function that detects
when the apple hits the ground is

function [position,isterminal,direction] = appleEventsFcn(t,y)
position = y(1); % The value that we want to be zero
isterminal = 1;  % Halt integration 
direction = 0;   % The zero can be approached from either direction

Event Information
If you specify an events function, then call the ODE solver with three extra output arguments, as

[t,y,te,ye,ie] = odeXY(odefun,tspan,y0,options)

The three additional outputs returned by the solver correspond to the detected events:

• te is a column vector of the times at which events occurred.
• ye contains the solution value at each of the event times in te.
• ie contains indices into the vector returned by the event function. The values indicate which

event the solver detected.

Alternatively, you can call the solver with a single output, as

sol = odeXY(odefun,tspan,y0,options)

In this case, the event information is stored in the structure as sol.te, sol.ye, and sol.ie.

Limitations
The root-finding mechanism employed by the ODE solver in conjunction with the event function has
these limitations:

• If a terminal event occurs during the first step of the integration, then the solver registers the
event as nonterminal and continues integrating.

• If more than one terminal event occurs during the first step, then only the first event registers and
the solver continues integrating.

• Zeros are determined by sign crossings between steps. Therefore, zeros of functions with an even
number of crossings between steps can be missed.

If the solver steps past events, try reducing RelTol and AbsTol to improve accuracy. Alternatively,
set MaxStep to place an upper bound on the step size. Adjusting tspan does not change the steps
taken by the solver.

Simple Event Location: A Bouncing Ball
This example shows how to write a simple event function for use with an ODE solver. The example file
ballode models the motion of a bouncing ball. The events function halts the integration each time
the ball bounces, and the integration then restarts with new initial conditions. As the ball bounces,
the integration stops and restarts several times.

The equations for the bouncing ball are
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A ball bounce occurs when the height of the ball  is equal to zero after decreasing. An events
function that codes this behavior is

function [value,isterminal,direction] = bounceEvents(t,y)
value = y(1);     % Detect height = 0
isterminal = 1;   % Stop the integration
direction = -1;   % Negative direction only

Type ballode to run the example and illustrate the use of an events function to simulate the
bouncing of a ball.

ballode

Advanced Event Location: Restricted Three Body Problem
This example shows how to use the directional components of an event function. The example file
orbitode simulates a restricted three body problem where one body is orbiting two much larger
bodies. The events function determines the points in the orbit where the orbiting body is closest and
farthest away. Since the value of the events function is the same at the closest and farthest points of
the orbit, the direction of zero crossing is what distinguishes them.
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The equations for the restricted three body problem are

where

The first two solution components are coordinates of the body of infinitesimal mass, so plotting one
against the other gives the orbit of the body.

The events function nested in orbitode.m searches for two events. One event locates the point of
maximum distance from the starting point, and the other locates the point where the spaceship
returns to the starting point. The events are located accurately, even though the step sizes used by
the integrator are not determined by the locations of the events. In this example, the ability to specify
the direction of the zero crossing is critical. Both the point of return to the starting point and the
point of maximum distance from the starting point have the same event values, and the direction of
the crossing is used to distinguish them. An events function that codes this behavior is

function [value,isterminal,direction] = orbitEvents(t,y)
% dDSQdt is the derivative of the equation for current distance. Local
% minimum/maximum occurs when this value is zero.
dDSQdt = 2 * ((y(1:2)-y0(1:2))' * y(3:4)); 
value = [dDSQdt; dDSQdt];  
isterminal = [1;  0];         % stop at local minimum
direction  = [1; -1];         % [local minimum, local maximum]
end

Type orbitode to run the example.

orbitode

This is an example of event location where the ability to
specify the direction of the zero crossing is critical.  Both
the point of return to the initial point and the point of
maximum distance have the same event function value, and the
direction of the crossing is used to distinguish them.

Calling ODE45 with event functions active...

Note that the step sizes used by the integrator are NOT
determined by the location of the events, and the events are
still located accurately.
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See Also
odeget | odeset

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-10
• “Parameterizing Functions” on page 10-2
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Solve Nonstiff ODEs
This page contains two examples of solving nonstiff ordinary differential equations using ode45.
MATLAB® has three solvers for nonstiff ODEs.

• ode45
• ode23
• ode113

For most nonstiff problems, ode45 performs best. However, ode23 is recommended for problems that
permit a slightly cruder error tolerance or in the presence of moderate stiffness. Likewise, ode113
can be more efficient than ode45 for problems with stringent error tolerances.

If the nonstiff solvers take a long time to solve the problem or consistently fail the integration, then
the problem might be stiff. See “Solve Stiff ODEs” on page 11-22 for more information.

Example: Nonstiff van der Pol Equation

The van der Pol equation is a second order ODE

where  is a scalar parameter. Rewrite this equation as a system of first-order ODEs by making
the substitution . The resulting system of first-order ODEs is

The system of ODEs must be coded into a function file that the ODE solver can use. The general
functional signature of an ODE function is

  dydt = odefun(t,y)

That is, the function must accept both t and y as inputs, even if it does not use t for any
computations.

The function file vdp1.m codes the van der Pol equation using . The variables  and  are
represented by y(1) and y(2), and the two-element column vector dydt contains the expressions
for  and .

function dydt = vdp1(t,y)
%VDP1  Evaluate the van der Pol ODEs for mu = 1
%
%   See also ODE113, ODE23, ODE45.

%   Jacek Kierzenka and Lawrence F. Shampine
%   Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Solve the ODE using the ode45 function on the time interval [0 20] with initial values [2 0]. The
output is a column vector of time points t and a solution array y. Each row in y corresponds to a time
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returned in the corresponding row of t. The first column of y corresponds to , and the second
column to .

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

Plot the solutions for  and  against t.

plot(t,y(:,1),'-o',t,y(:,2),'-o')
title('Solution of van der Pol Equation (\mu = 1) using ODE45');
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2')

The vdpode function solves the same problem, but it accepts a user-specified value for . The van
der Pol equations become stiff as  increases. For example, with the value  you need to use
a stiff solver such as ode15s to solve the system.

Example: Nonstiff Euler Equations

The Euler equations for a rigid body without external forces are a standard test problem for ODE
solvers intended for nonstiff problems.

The equations are
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The function file rigidode defines and solves this first-order system of equations over the time
interval [0 12], using the vector of initial conditions [0; 1; 1] corresponding to the initial values
of , , and . The local function f(t,y) encodes the system of equations.

rigidode calls ode45 with no output arguments, so the solver uses the default output function
odeplot to automatically plot the solution points after each step.

function rigidode
%RIGIDODE  Euler equations of a rigid body without external forces.
%   A standard test problem for non-stiff solvers proposed by Krogh.  The
%   analytical solutions are Jacobian elliptic functions, accessible in
%   MATLAB.  The interval here is about 1.5 periods; it is that for which
%   solutions are plotted on p. 243 of Shampine and Gordon.
%
%   L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary
%   Differential Equations, W.H. Freeman & Co., 1975.
%
%   See also ODE45, ODE23, ODE113, FUNCTION_HANDLE.

%   Mark W. Reichelt and Lawrence F. Shampine, 3-23-94, 4-19-94
%   Copyright 1984-2014 The MathWorks, Inc.

tspan = [0 12];
y0 = [0; 1; 1];

% solve the problem using ODE45
figure;
ode45(@f,tspan,y0);

% --------------------------------------------------------------------------

function dydt = f(t,y)
dydt = [    y(2)*y(3)
   -y(1)*y(3)
   -0.51*y(1)*y(2) ];

Solve the nonstiff Euler equations by calling the rigidode function.

rigidode
title('Solution of Rigid Body w/o External Forces using ODE45')
legend('y_1','y_2','y_3','Location','Best')
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See Also
ode113 | ode23 | ode45

More About
• “Choose an ODE Solver” on page 11-2
• “Parameterizing Functions” on page 10-2
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Solve Stiff ODEs
This page contains two examples of solving stiff ordinary differential equations using ode15s.
MATLAB® has four solvers designed for stiff ODEs.

• ode15s
• ode23s
• ode23t
• ode23tb

For most stiff problems, ode15s performs best. However, ode23s, ode23t, and ode23tb can be
more efficient if the problem permits a crude error tolerance.

What is a Stiff ODE?

For some ODE problems, the step size taken by the solver is forced down to an unreasonably small
level in comparison to the interval of integration, even in a region where the solution curve is smooth.
These step sizes can be so small that traversing a short time interval might require millions of
evaluations. This can lead to the solver failing the integration, but even if it succeeds it will take a
very long time to do so.

Equations that cause this behavior in ODE solvers are said to be stiff. The problem that stiff ODEs
pose is that explicit solvers (such as ode45) are untenably slow in achieving a solution. This is why
ode45 is classified as a nonstiff solver along with ode23 and ode113.

Solvers that are designed for stiff ODEs, known as stiff solvers, typically do more work per step. The
pay-off is that they are able to take much larger steps, and have improved numerical stability
compared to the nonstiff solvers.

Solver Options

For stiff problems, specifying the Jacobian matrix using odeset is particularly important. Stiff solvers
use the Jacobian matrix  to estimate the local behavior of the ODE as the integration
proceeds, so supplying the Jacobian matrix (or, for large sparse systems, its sparsity pattern) is
critical for efficiency and reliability. Use the Jacobian, JPattern, or Vectorized options of
odeset to specify information about the Jacobian. If you do not supply the Jacobian then the solver
estimates it numerically using finite differences.

See odeset for a complete listing of other solver options.

Example: Stiff van der Pol Equation

The van der Pol equation is a second order ODE

where  is a scalar parameter. When , the resulting system of ODEs is nonstiff and easily
solved using ode45. However, if you increase  to 1000, then the solution changes dramatically and
exhibits oscillation on a much longer time scale. Approximating the solution of the initial value
problem becomes more difficult. Because this particular problem is stiff, a solver intended for nonstiff
problems, such as ode45, is too inefficient to be practical. Use a stiff solver such as ode15s for this
problem instead.
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Rewrite the van der Pol equation as a system of first-order ODEs by making the substitution .
The resulting system of first-order ODEs is

The vdp1000 function evaluates the van der Pol equation using .

function dydt = vdp1000(t,y)
%VDP1000  Evaluate the van der Pol ODEs for mu = 1000.
%
%   See also ODE15S, ODE23S, ODE23T, ODE23TB.

%   Jacek Kierzenka and Lawrence F. Shampine
%   Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Use the ode15s function to solve the problem with an initial conditions vector of [2; 0], over a time
interval of [0 3000]. For scaling reasons, plot only the first component of the solution.

[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-o');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('Time t');
ylabel('Solution y_1');
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The vdpode function also solves the same problem, but it accepts a user-specified value for . The
equations become increasingly stiff as  increases.

Example: Sparse Brusselator System

The classic Brusselator system of equations is potentially large, stiff, and sparse. The Brusselator
system models diffusion in a chemical reaction, and is represented by a system of equations involving

, , , and .

The function file brussode solves this set of equations on the time interval [0,10] with .
The initial conditions are

where  for . Therefore, there are  equations in the system, but the
Jacobian  is a banded matrix with a constant width of 5 if the equations are ordered as

. As  increases, the problem becomes increasingly stiff, and the Jacobian becomes
increasingly sparse.
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The function call brussode(N), for , specifies a value for N in the system of equations,
corresponding to the number of grid points. By default, brussode uses .

brussode contains a few subfunctions:

• The nested function f(t,y) encodes the system of equations for the Brusselator problem,
returning a vector.

• The local function jpattern(N) returns a sparse matrix of 1s and 0s showing the locations of
nonzeros in the Jacobian. This matrix is assigned to the JPattern field of the options structure.
The ODE solver uses this sparsity pattern to generate the Jacobian numerically as a sparse matrix.
Supplying this sparsity pattern in the problem significantly reduces the number of function
evaluations required to generate the 2N-by-2N Jacobian, from 2N evaluations to just 4.

function brussode(N)
%BRUSSODE  Stiff problem modelling a chemical reaction (the Brusselator).
%   The parameter N >= 2 is used to specify the number of grid points; the
%   resulting system consists of 2N equations. By default, N is 20.  The
%   problem becomes increasingly stiff and increasingly sparse as N is
%   increased.  The Jacobian for this problem is a sparse constant matrix
%   (banded with bandwidth 5).
%
%   The property 'JPattern' is used to provide the solver with a sparse
%   matrix of 1's and 0's showing the locations of nonzeros in the Jacobian
%   df/dy.  By default, the stiff solvers of the ODE Suite generate Jacobians
%   numerically as full matrices.  However, when a sparsity pattern is
%   provided, the solver uses it to generate the Jacobian numerically as a
%   sparse matrix.  Providing a sparsity pattern can significantly reduce the
%   number of function evaluations required to generate the Jacobian and can
%   accelerate integration.  For the BRUSSODE problem, only 4 evaluations of
%   the function are needed to compute the 2N x 2N Jacobian matrix.
%
%   Setting the 'Vectorized' property indicates the function f is
%   vectorized.
%
%   E. Hairer and G. Wanner, Solving Ordinary Differential Equations II,
%   Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin,
%   1991, pp. 5-8.
%
%   See also ODE15S, ODE23S, ODE23T, ODE23TB, ODESET, FUNCTION_HANDLE.

%   Mark W. Reichelt and Lawrence F. Shampine, 8-30-94
%   Copyright 1984-2014 The MathWorks, Inc.

% Problem parameter, shared with the nested function.
if nargin<1
   N = 20;
end

tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N)); repmat(3,1,N)];

options = odeset('Vectorized','on','JPattern',jpattern(N));

[t,y] = ode15s(@f,tspan,y0,options);

u = y(:,1:2:end);
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x = (1:N)/(N+1);
figure;
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);

% -------------------------------------------------------------------------
% Nested function -- N is provided by the outer function.
%

   function dydt = f(t,y)
      % Derivative function
      c = 0.02 * (N+1)^2;
      dydt = zeros(2*N,size(y,2));      % preallocate dy/dt
      
      % Evaluate the 2 components of the function at one edge of the grid
      % (with edge conditions).
      i = 1;
      dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(1-2*y(i,:)+y(i+2,:));
      dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(3-2*y(i+1,:)+y(i+3,:));
      
      % Evaluate the 2 components of the function at all interior grid points.
      i = 3:2:2*N-3;
      dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
         c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
      dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
         c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
      
      % Evaluate the 2 components of the function at the other edge of the grid
      % (with edge conditions).
      i = 2*N-1;
      dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(y(i-2,:)-2*y(i,:)+1);
      dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(y(i-1,:)-2*y(i+1,:)+3);
   end
% -------------------------------------------------------------------------

end  % brussode

% ---------------------------------------------------------------------------
% Subfunction -- the sparsity pattern
%

function S = jpattern(N)
% Jacobian sparsity pattern
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end
% ---------------------------------------------------------------------------

Solve the Brusselator system for  by running the function brussode.

brussode
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Solve the system for  by specifying an input to brussode.

brussode(50)
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See Also
ode15s | ode23s | ode23t | ode23tb

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-10
• “Parameterizing Functions” on page 10-2
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Solve Differential Algebraic Equations (DAEs)
In this section...
“What is a Differential Algebraic Equation?” on page 11-29
“Consistent Initial Conditions” on page 11-30
“Differential Index” on page 11-30
“Imposing Nonnegativity” on page 11-31
“Solve Robertson Problem as Semi-Explicit Differential Algebraic Equations (DAEs)” on page 11-31

What is a Differential Algebraic Equation?
Differential algebraic equations are a type of differential equation where one or more derivatives of
dependent variables are not present in the equations. Variables that appear in the equations without
their derivative are called algebraic, and the presence of algebraic variables means that you cannot
write down the equations in the explicit form y′ = f t, y . Instead, you can solve DAEs with these
forms:

• The ode15s and ode23t solvers can solve index-1 linearly implicit problems with a singular mass
matrix M t, y y′ = f t, y , including semi-explicit DAEs of the form

y′ = f t, y, z
0 = g t, y, z .

In this form, the presence of algebraic variables leads to a singular mass matrix, since there are
one or more zeros on the main diagonal.

My′ =

y′1 0 ⋯ 0
0 y′2 0 ⋮
⋮ 0 ⋱ 0
0 ⋯ 0 0

.

By default, solvers automatically test the singularity of the mass matrix to detect DAE systems. If
you know about singularity ahead of time then you can set the MassSingular option of odeset
to 'yes'. With DAEs, you can also provide the solver with a guess of the initial conditions for y′0
using the InitialSlope property of odeset. This is in addition to specifying the usual initial
conditions for y0 in the call to the solver.

• The ode15i solver can solve more general DAEs in the fully implicit form

f t, y, y′ = 0 .

In the fully implicit form, the presence of algebraic variables leads to a singular Jacobian matrix.
This is because at least one of the columns in the matrix is guaranteed to contain all zeros, since
the derivative of that variable does not appear in the equations.

J = ∂ f / ∂y′ =

∂ f1
∂y′1

⋯ ∂ f1
∂y′n

⋮ ⋱ ⋮
∂ fm
∂y′1

⋯ ∂ fm
∂y′n
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The ode15i solver requires that you specify initial conditions for both y′0 and y0. Also, unlike the
other ODE solvers, ode15i requires the function encoding the equations to accept an extra input:
odefun(t,y,yp).

DAEs arise in a wide variety of systems because physical conservation laws often have forms like
x + y + z = 0. If x, x', y, and y' are defined explicitly in the equations, then this conservation
equation is sufficient to solve for z without having an expression for z'.

Consistent Initial Conditions
When you are solving a DAE, you can specify initial conditions for both y′0 and y0. The ode15i solver
requires both initial conditions to be specified as input arguments. For the ode15s and ode23t
solvers, the initial condition for y′0 is optional (but can be specified using the InitialSlope option
of odeset). In both cases, it is possible that the initial conditions you specify do not agree with the
equations you are trying to solve. Initial conditions that conflict with one another are called
inconsistent. The treatment of the initial conditions varies by solver:

• ode15s and ode23t — If you do not specify an initial condition for y′0, then the solver
automatically computes consistent initial conditions based on the initial condition you provide for
y0. If you specify an inconsistent initial condition for y′0, then the solver treats the values as
guesses, attempts to compute consistent values close to the guesses, and continues on to solve the
problem.

• ode15i — The initial conditions you supply to the solver must be consistent, and ode15i does not
check the supplied values for consistency. The helper function decic computes consistent initial
conditions for this purpose.

Differential Index
DAEs are characterized by their differential index, which is a measure of their singularity. By
differentiating equations you can eliminate algebraic variables, and if you do this enough times then
the equations take the form of a system of explicit ODEs. The differential index of a system of DAEs is
the number of derivatives you must take to express the system as an equivalent system of explicit
ODEs. Thus, ODEs have a differential index of 0.

An example of an index-1 DAE is

y t = k t .

For this equation, you can take a single derivative to obtain the explicit ODE form

y′ = k′ t .

An example of an index-2 DAE is

y′1 = y2
0 = k t − y1 .

These equations require two derivatives to be rewritten in the explicit ODE form

y′1 = k′ t
y′2 = k′′ t .
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The ode15s and ode23t solvers only solve DAEs of index 1. If the index of your equations is 2 or
higher, then you need to rewrite the equations as an equivalent system of index-1 DAEs. It is always
possible to take derivatives and rewrite a DAE system as an equivalent system of index-1 DAEs. Be
aware that if you replace algebraic equations with their derivatives, then you might have removed
some constraints. If the equations no longer include the original constraints, then the numerical
solution can drift.

If you have Symbolic Math Toolbox, then see “Solve Differential Algebraic Equations (DAEs)”
(Symbolic Math Toolbox) for more information.

Imposing Nonnegativity
Most of the options in odeset on page 11-10 work as expected with the DAE solvers ode15s,
ode23t, and ode15i. However, one notable exception is with the use of the NonNegative on page
11-34 option. The NonNegative option does not support implicit solvers (ode15s, ode23t,
ode23tb) applied to problems with a mass matrix. Therefore, you cannot use this option to impose
nonnegativity constraints on a DAE problem, which necessarily has a singular mass matrix. For more
details, see [1] on page 11-33.

Solve Robertson Problem as Semi-Explicit Differential Algebraic
Equations (DAEs)
This example reformulates a system of ODEs as a system of differential algebraic equations (DAEs).
The Robertson problem found in hb1ode.m is a classic test problem for programs that solve stiff
ODEs. The system of equations is

hb1ode solves this system of ODEs to steady state with the initial conditions , , and
. But the equations also satisfy a linear conservation law,

In terms of the solution and initial conditions, the conservation law is

The system of equations can be rewritten as a system of DAEs by using the conservation law to
determine the state of . This reformulates the problem as the DAE system

The differential index of this system is 1, since only a single derivative of  is required to make this a
system of ODEs. Therefore, no further transformations are required before solving the system.

The function robertsdae encodes this DAE system. Save robertsdae.m in your current folder to
run the example.
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function out = robertsdae(t,y)
out = [-0.04*y(1) + 1e4*y(2).*y(3)
   0.04*y(1) - 1e4*y(2).*y(3) - 3e7*y(2).^2
   y(1) + y(2) + y(3) - 1 ];

The full example code for this formulation of the Robertson problem is available in hb1dae.m.

Solve the DAE system using ode15s. Consistent initial conditions for y0 are obvious based on the
conservation law. Use odeset to set the options:

• Use a constant mass matrix to represent the left hand side of the system of equations.

• Set the relative error tolerance to 1e-4.
• Use an absolute tolerance of 1e-10 for the second solution component, since the scale varies

dramatically from the other components.
• Leave the 'MassSingular' option at its default value 'maybe' to test the automatic detection of

a DAE.

y0 = [1; 0; 0];
tspan = [0 4*logspace(-6,6)];
M = [1 0 0; 0 1 0; 0 0 0];
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',[1e-6 1e-10 1e-6]);
[t,y] = ode15s(@robertsdae,tspan,y0,options);

Plot the solution.

y(:,2) = 1e4*y(:,2);
semilogx(t,y);
ylabel('1e4 * y(:,2)');
title('Robertson DAE problem with a Conservation Law, solved by ODE15S');
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Nonnegative ODE Solution
This topic shows how to constrain the solution of an ODE to be nonnegative. Imposing nonnegativity
is not always trivial, but sometimes it is necessary due to the physical interpretation of the equations
or due to the nature of the solution. You should only impose this constraint on the solution when
necessary, such as in cases where the integration fails without it, or where the solution would be
inapplicable.

If certain components of the solution must be nonnegative, then use odeset to set the NonNegative
option for the indices of these components. This option is not available for ode23s, ode15i, or for
implicit solvers (ode15s, ode23t, ode23tb) applied to problems with a mass matrix. In particular,
you cannot impose nonnegativity constraints on a DAE problem, which necessarily has a singular
mass matrix.

Example: Absolute Value Function

Consider the initial value problem

y′ = − y ,

solved on the interval [0, 40] with the initial condition y(0) = 1. The solution of this ODE decays to
zero. If the solver produces a negative solution value, then it begins to track the solution of the ODE
through this value, and the computation eventually fails as the calculated solution diverges to − ∞.
Using the NonNegative option prevents this integration failure.

Compare the analytic solution of y(t) = e−t to a solution of the ODE using ode45 with no extra
options, and to one with the NonNegative option set.

ode = @(t,y) -abs(y);

% Standard solution with |ode45|
options1 = odeset('Refine',1);
[t0,y0] = ode45(ode,[0 40],1,options1);

% Solution with nonnegative constraint
options2 = odeset(options1,'NonNegative',1);
[t1,y1] = ode45(ode,[0 40],1,options2);

% Analytic solution
t = linspace(0,40,1000);
y = exp(-t);

Plot the three solutions for comparison. Imposing nonnegativity is crucial to keep the solution from
veering off toward − ∞.

plot(t,y,'b-',t0,y0,'ro',t1,y1,'k*');
legend('Exact solution','No constraints','Nonnegativity', ...
       'Location','SouthWest')
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Example: The Knee Problem

Another example of a problem that requires a nonnegative solution is the knee problem coded in the
example file kneeode. The equation is

ϵy′ = 1− x y − y2,

solved on the interval [0, 2] with the initial condition y(0) = 1. The parameter ϵ generally is taken to
satisfy 0 < ϵ ≪ 1, and this problem uses ϵ = 1 × 10−6. The solution to this ODE approaches y = 1− x
for x < 1 and y = 0 for x > 1. However, computing the numerical solution with default tolerances
shows that the solution follows the y = 1− x isocline for the whole interval of integration. Imposing
nonnegativity constraints results in the correct solution.

Solve the knee problem with and without nonnegativity constraints.

epsilon = 1e-6;
y0 = 1;
xspan = [0 2];
odefcn = @(x,y,epsilon) ((1-x)*y - y^2)/epsilon;

% Solve without imposing constraints
[x1,y1] = ode15s(@(x,y) odefcn(x,y,epsilon), xspan, y0);

% Impose a nonnegativity constraint
options = odeset('NonNegative',1);
[x2,y2] = ode15s(@(x,y) odefcn(x,y,epsilon), xspan, y0, options);
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Plot the solutions for comparison.

plot(x1,y1,'ro',x2,y2,'b*')
axis([0,2,-1,1])
title('The "knee problem"')
legend('No constraints','Non-negativity')
xlabel('x')
ylabel('y')

References

[1] Shampine, L.F., S. Thompson, J.A. Kierzenka, and G.D. Byrne, "Non-negative solutions of ODEs,"
Applied Mathematics and Computation Vol. 170, 2005, pp. 556-569.

See Also
odeset

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-10
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Troubleshoot Common ODE Problems

Error Tolerances
Question or Problem Answer
How do I choose the error thresholds RelTol
and AbsTol?

RelTol, the relative accuracy tolerance, controls
the number of correct digits in the computed
answer. AbsTol, the absolute error tolerance,
controls the difference between the computed
answer and the true solution. At each step, the
error e in component i of the solution satisfies

|e(i)| ≤
max(RelTol*abs(y(i)),AbsTol(i))

Roughly speaking, this means that you want
RelTol correct digits in all solution components,
excluding those smaller than the threshold
AbsTol(i). Even if you are not interested in a
component y(i) when it is small, you might have
to specify a value for AbsTol(i) that is small
enough to get some correct digits in y(i) so that
you can accurately compute more interesting
components.

I want answers that are correct to the precision
of the computer. Why can I not simply set RelTol
to eps?

You can get close to machine precision, but not
that close. The solvers do not allow RelTol near
eps because they try to approximate a
continuous function. At tolerances comparable to
eps, the machine arithmetic causes all functions
to look discontinuous.

How do I tell the solver that I do not care about
getting an accurate answer for one of the solution
components?

You can increase the absolute error tolerance
AbsTol for this solution component. If the
tolerance is bigger than the solution component,
this specifies that no digits in the component
need to be correct. The solver might have to get
some correct digits in this component to compute
other components accurately, but it generally
handles this automatically.
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Problem Scale
Question or Problem Answer
How large a problem can I solve with the ODE
suite?

The primary constraints are memory and time. At
each time step, the solvers for nonstiff problems
allocate vectors of length n, where n is the
number of equations in the system. The solvers
for stiff problems allocate vectors of length n but
also allocate an n-by-n Jacobian matrix. For these
solvers, it might be advantageous to specify the
Jacobian sparsity pattern using the JPattern
option of odeset.

If the problem is nonstiff, or if you are using the
JPattern option, it might be possible to solve a
problem with thousands of unknowns. In this
case, however, storage of the result can be
problematic. Ask the solver to evaluate the
solution at specific points only, or call the solver
with no output arguments and use an output
function to monitor the solution.

I am solving a very large system, but only care
about a few of the components of y. Is there any
way to avoid storing all of the elements?

Yes. The OutputFcn option is designed
specifically for this purpose. When you call the
solver with no output arguments, the solver does
not allocate storage to hold the entire solution
history. Instead, the solver calls
OutputFcn(t,y,flag) at each time step. To
keep the history of specific elements, write an
output function that stores or plots only the
elements you care about.

What is the startup cost of the integration and
how can I reduce it?

The biggest startup cost occurs as the solver
attempts to find a step size appropriate to the
scale of the problem. If you happen to know an
appropriate step size, use the InitialStep
option. For example, if you repeatedly call the
integrator in an event location loop, the last step
that was taken before the event is probably
scaled correctly for the next integration. Type
edit ballode to see an example.

The first step size that the integrator takes is too
large, and it misses important behavior.

You can specify the first step size with the
InitialStep option. The integrator tries this
step size, then reduces it if necessary.
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Solution Components
Question or Problem Answer
The solution does not look like what I expected. If your expectations are correct, then reduce the

error tolerances from their default values. A
smaller relative error tolerance is needed to
accurately solve problems integrated over “long”
intervals, as well as problems that are moderately
unstable.

Check whether there are solution components
that stay smaller than their absolute error
tolerance for some time. If so, you are not
requiring any correct digits in these components.
This might be acceptable for these components,
but failing to compute them accurately might
degrade the accuracy of other components that
depend on them.

My plots are not smooth enough. Increase the value of Refine from its default of 4
in ode45 or 1 in the other solvers. The bigger the
value of Refine, the more output points the
solver generates. Execution speed is not affected
much by the value of Refine.

I am plotting the solution as it is computed and it
looks fine, but the code gets stuck at some point.

First verify that the ODE function is smooth near
the point where the code gets stuck. If it is not,
then the solver must take small steps to deal with
this. It might help to break the integration
interval into pieces over which the ODE function
is smooth.

If the function is smooth and the code is taking
extremely small steps, you are probably trying to
solve a stiff problem with a solver not intended
for that purpose. Switch to using one of the stiff
solvers ode15s, ode23s, ode23t, or ode23tb.

What if I have the final and not the initial value? All the solvers of the ODE suite allow you to solve
backward or forward in time. The syntax for the
solvers is [t,y] = ode45(odefun,[t0
tf],y0); and the syntax accepts t0 > tf.
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Question or Problem Answer
My integration proceeds very slowly, using too
many time steps.

First, check that tspan is not too long.
Remember that the solver uses as many time
points as necessary to produce a smooth solution.
If the ODE function changes on a time scale that
is very short compared to tspan, then the solver
uses a lot of time steps. Long-time integration is a
hard problem. Break tspan into smaller pieces.

If the ODE function does not change noticeably
on the tspan interval, it could be that your
problem is stiff. Try using one of the stiff solvers
ode15s, ode23s, ode23t, or ode23tb.

Finally, make sure that the ODE function is
written in an efficient way. The solvers evaluate
the derivatives in the ODE function many times.
The cost of numerical integration depends
critically on the expense of evaluating the ODE
function. Rather than recomputing complicated
constant parameters at each evaluation, store
them in global variables, or calculate them once
and pass them to nested functions.

I know that the solution undergoes a radical
change at time t, where t0 <= t <= tf , but
the integrator steps past without “seeing” it.

If you know that there is a sharp change at time
t, try breaking the tspan interval into two
pieces, [t0 t] and [t tf], and call the
integrator twice or continue the integration using
odextend.

If the differential equation has periodic
coefficients or solutions, ensure the solver does
not step over periods by restricting the maximum
step size to the length of the period.
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Problem Type
Can the solvers handle partial differential
equations (PDEs) that have been discretized by
the method of lines?

Yes, because the discretization produces a system
of ODEs. Depending on the discretization, you
might have a form involving mass matrices, which
the ODE solvers provide for. Often the system is
stiff. This is to be expected if the PDE is
parabolic, or when there are phenomena that
happen on very different time scales such as a
chemical reaction in a fluid flow. In such cases,
use one of the four stiff solvers ode15s, ode23s,
ode23t, or ode23tb.

If there are many equations, use the JPattern
option to specify the Jacobian sparsity pattern.
This can make the difference between success
and failure as it prevents the computation from
being too expensive. Type edit burgersode to
see an example that uses JPattern.

If the system is not stiff, or not very stiff, then
ode23 and ode45 are more efficient than the stiff
solvers ode15s, ode23s, ode23t, and ode23tb.

You can solve parabolic-elliptic partial differential
equations in 1-D directly with the MATLAB PDE
solver pdepe.

Can I integrate a set of sampled data? Not directly. Instead, represent the data as a
function by interpolation or some other scheme
for fitting data. The smoothness of this function is
critical. A piecewise polynomial fit such as a
spline can look smooth to the eye, but rough to a
solver; the solver takes small steps where the
derivatives of the fit have jumps. Either use a
smooth function to represent the data or use one
of the lower-order solvers (ode23, ode23s,
ode23t, ode23tb) that is less sensitive to
smoothness. See “ODE with Time-Dependent
Terms” for an example.

See Also
deval | odeget | odeset | odextend

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-10
• “ODE Event Location” on page 11-12
• “Nonnegative ODE Solution” on page 11-34
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Differential Equations
This example shows how to use MATLAB® to formulate and solve several different types of
differential equations. MATLAB offers several numerical algorithms to solve a wide variety of
differential equations:

• Initial value problems
• Boundary value problems
• Delay differential equations
• Partial differential equations

Initial Value Problem

vanderpoldemo is a function that defines the van der Pol equation

d2y
dt2 − μ 1− y2 dy

dt + y = 0 .

type vanderpoldemo

function dydt = vanderpoldemo(t,y,Mu)
%VANDERPOLDEMO Defines the van der Pol equation for ODEDEMO.

% Copyright 1984-2014 The MathWorks, Inc.

dydt = [y(2); Mu*(1-y(1)^2)*y(2)-y(1)];

The equation is written as a system of two first-order ordinary differential equations (ODEs). These
equations are evaluated for different values of the parameter μ. For faster integration, you should
choose an appropriate solver based on the value of μ.

For μ = 1, any of the MATLAB ODE solvers can solve the van der Pol equation efficiently. The ode45
solver is one such example. The equation is solved in the domain 0, 20  with the initial conditions
y 0 = 2 and dy

dt t = 0
= 0.

tspan = [0 20];
y0 = [2; 0];
Mu = 1;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode45(ode, tspan, y0);

% Plot solution
plot(t,y(:,1))
xlabel('t')
ylabel('solution y')
title('van der Pol Equation, \mu = 1')
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For larger magnitudes of μ, the problem becomes stiff. This label is for problems that resist attempts
to be evaluated with ordinary techniques. Instead, special numerical methods are needed for fast
integration. The ode15s, ode23s, ode23t, and ode23tb functions can solve stiff problems
efficiently.

This solution to the van der Pol equation for μ = 1000 uses ode15s with the same initial conditions.
You need to stretch out the time span drastically to 0, 3000  to be able to see the periodic movement
of the solution.

tspan = [0, 3000];
y0 = [2; 0];
Mu = 1000;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode15s(ode, tspan, y0);

plot(t,y(:,1))
title('van der Pol Equation, \mu = 1000')
axis([0 3000 -3 3])
xlabel('t')
ylabel('solution y')
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Boundary Value Problems

bvp4c and bvp5c solve boundary value problems for ordinary differential equations.

The example function twoode has a differential equation written as a system of two first-order ODEs.
The differential equation is

d2y
dt2 + y = 0 .

type twoode

function dydx = twoode(x,y)
%TWOODE  Evaluate the differential equations for TWOBVP.
%
%   See also TWOBC, TWOBVP.

%   Lawrence F. Shampine and Jacek Kierzenka
%   Copyright 1984-2014 The MathWorks, Inc.

dydx = [ y(2); -abs(y(1)) ];

The function twobc has the boundary conditions for the problem: y 0 = 0 and y 4 = − 2.

type twobc

function res = twobc(ya,yb)
%TWOBC  Evaluate the residual in the boundary conditions for TWOBVP.
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%
%   See also TWOODE, TWOBVP.

%   Lawrence F. Shampine and Jacek Kierzenka
%   Copyright 1984-2014 The MathWorks, Inc.

res = [ ya(1); yb(1) + 2 ];

Prior to calling bvp4c, you have to provide a guess for the solution you want represented at a mesh.
The solver then adapts the mesh as it refines the solution.

The bvpinit function assembles the initial guess in a form you can pass to the solver bvp4c. For a
mesh of [0 1 2 3 4] and constant guesses of y x = 1 and y′ x = 0, the call to bvpinit is:

solinit = bvpinit([0 1 2 3 4],[1; 0]);

With this initial guess, you can solve the problem with bvp4c. Evaluate the solution returned by
bvp4c at some points using deval, and then plot the resulting values.

sol = bvp4c(@twoode, @twobc, solinit);

xint = linspace(0, 4, 50);
yint = deval(sol, xint);
plot(xint, yint(1,:));
xlabel('x')
ylabel('solution y')
hold on
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This particular boundary value problem has exactly two solutions. You can obtain the other solution
by changing the initial guesses to y x = − 1 and y′ x = 0.

solinit = bvpinit([0 1 2 3 4],[-1; 0]);
sol = bvp4c(@twoode,@twobc,solinit);

xint = linspace(0,4,50);
yint = deval(sol,xint);
plot(xint,yint(1,:));
legend('Solution 1','Solution 2')
hold off

Delay Differential Equations

dde23, ddesd, and ddensd solve delay differential equations with various delays. The examples
ddex1, ddex2, ddex3, ddex4, and ddex5 form a mini tutorial on using these solvers.

The ddex1 example shows how to solve the system of differential equations

y1′ t = y1 t − 1
y2′ t = y1 t − 1 + y2 t − 0 . 2
y3′ t = y2 t .

You can represent these equations with the anonymous function

ddex1fun = @(t,y,Z) [Z(1,1); Z(1,1)+Z(2,2); y(2)];
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The history of the problem (for t ≤ 0) is constant:

y1 t = 1
y2 t = 1
y3 t = 1 .

You can represent the history as a vector of ones.

ddex1hist = ones(3,1);

A two-element vector represents the delays in the system of equations.

lags = [1 0.2];

Pass the function, delays, solution history, and interval of integration 0, 5  to the solver as inputs. The
solver produces a continuous solution over the whole interval of integration that is suitable for
plotting.

sol = dde23(ddex1fun, lags, ddex1hist, [0 5]);

plot(sol.x,sol.y);
title({'An example of Wille and Baker', 'DDE with Constant Delays'});
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2','y_3','Location','NorthWest');
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Partial Differential Equations

pdepe solves partial differential equations in one space variable and time. The examples pdex1,
pdex2, pdex3, pdex4, and pdex5 form a mini tutorial on using pdepe.

This example problem uses the functions pdex1pde, pdex1ic, and pdex1bc.

pdex1pde defines the differential equation

π2∂u
∂t = ∂

∂x
∂u
∂x .

type pdex1pde

function [c,f,s] = pdex1pde(x,t,u,DuDx)
%PDEX1PDE  Evaluate the differential equations components for the PDEX1 problem.
%
%   See also PDEPE, PDEX1.

%   Lawrence F. Shampine and Jacek Kierzenka
%   Copyright 1984-2014 The MathWorks, Inc.

c = pi^2;
f = DuDx;
s = 0;

pdex1ic sets up the initial condition

u(x, 0) = sinπx .

type pdex1ic

function u0 = pdex1ic(x)
%PDEX1IC  Evaluate the initial conditions for the problem coded in PDEX1.
%
%   See also PDEPE, PDEX1.

%   Lawrence F. Shampine and Jacek Kierzenka
%   Copyright 1984-2014 The MathWorks, Inc.

u0 = sin(pi*x);

pdex1bc sets up the boundary conditions

u 0, t = 0,

πe−t + ∂
∂x u 1, t = 0 .

type pdex1bc

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
%PDEX1BC  Evaluate the boundary conditions for the problem coded in PDEX1.
%
%   See also PDEPE, PDEX1.

%   Lawrence F. Shampine and Jacek Kierzenka
%   Copyright 1984-2014 The MathWorks, Inc.
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pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

pdepe requires the spatial discretization x and a vector of times t (at which you want a snapshot of
the solution). Solve the problem using a mesh of 20 nodes and request the solution at five values of t.
Extract and plot the first component of the solution.

x = linspace(0,1,20);
t = [0 0.5 1 1.5 2];
sol = pdepe(0,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

u1 = sol(:,:,1);

surf(x,t,u1);
xlabel('x');
ylabel('t');
zlabel('u');

See Also
bvp4c | ode45 | pdepe
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More About
• “Choose an ODE Solver” on page 11-2
• “Solving Boundary Value Problems” on page 12-2
• “Solving Partial Differential Equations” on page 13-2
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Solve Predator-Prey Equations
This example shows how to solve a differential equation representing a predator/prey model using
both ode23 and ode45. These functions are for the numerical solution of ordinary differential
equations using variable step size Runge-Kutta integration methods. ode23 uses a simple 2nd and
3rd order pair of formulas for medium accuracy and ode45 uses a 4th and 5th order pair for higher
accuracy.

Consider the pair of first-order ordinary differential equations known as the Lotka-Volterra
equations, or predator-prey model:

dx
dt = x− αxy

dy
dt = − y + βxy .

The variables x and y measure the sizes of the prey and predator populations, respectively. The
quadratic cross term accounts for the interactions between the species. The prey population
increases when no predators are present, and the predator population decreases when prey are
scarce.

Code Equations

To simulate the system, create a function that returns a column vector of state derivatives, given
state and time values. The two variables x and y can be represented in MATLAB as the first two
values in a vector y. Similarly, the derivatives are the first two values in a vector yp. The function
must accept values for t and y and return the values produced by the equations in yp.

yp(1) = (1 - alpha*y(2))*y(1)

yp(2) = (-1 + beta*y(1))*y(2)

In this example, the equations are contained in a file called lotka.m. This file uses parameter values
of α = 0 . 01 and β = 0 . 02.

type lotka

function yp = lotka(t,y)
%LOTKA  Lotka-Volterra predator-prey model.

%   Copyright 1984-2014 The MathWorks, Inc.

yp = diag([1 - .01*y(2), -1 + .02*y(1)])*y;

Simulate System

Use ode23 to solve the differential equation defined in lotka over the interval 0 < t < 15. Use an
initial condition of x 0 = y 0 = 20 so that the populations of predators and prey are equal.

t0 = 0;
tfinal = 15;
y0 = [20; 20];   
[t,y] = ode23(@lotka,[t0 tfinal],y0);
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Plot Results

Plot the resulting populations against time.

plot(t,y)
title('Predator/Prey Populations Over Time')
xlabel('t')
ylabel('Population')
legend('Prey','Predators','Location','North')

Now plot the populations against each other. The resulting phase plane plot makes the cyclic
relationship between the populations very clear.

plot(y(:,1),y(:,2))
title('Phase Plane Plot')
xlabel('Prey Population')
ylabel('Predator Population')
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Compare Results of Different Solvers

Solve the system a second time using ode45, instead of ode23. The ode45 solver takes longer for
each step, but it also takes larger steps. Nevertheless, the output of ode45 is smooth because by
default the solver uses a continuous extension formula to produce output at four equally spaced time
points in the span of each step taken. (You can adjust the number of points with the 'Refine'
option.) Plot both solutions for comparison.

[T,Y] = ode45(@lotka,[t0 tfinal],y0);

plot(y(:,1),y(:,2),'-',Y(:,1),Y(:,2),'-');
title('Phase Plane Plot')
legend('ode23','ode45')
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The results show that solving differential equations using different numerical methods can produce
slightly different answers.

See Also
ode23 | ode45

More About
• “Choose an ODE Solver” on page 11-2
• “Solve Nonstiff ODEs” on page 11-18
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Solve Equations of Motion for Baton Thrown into Air
This example solves a system of ordinary differential equations that model the dynamics of a baton
thrown into the air [1]. The baton is modeled as two particles with masses m1 and m2 connected by a
rod of length L. The baton is thrown into the air and subsequently moves in the vertical xy-plane
subject to the force due to gravity. The rod forms an angle θ with the horizontal and the coordinates
of the first mass are x, y . With this formulation, the coordinates of the second mass are
x + L cos θ, y + L sin θ .

The equations of motion for the system are obtained by applying Lagrange's equations for each of the
three coordinates, x, y, and θ:

m1 + m2 ẍ−m2L θ̈ sin θ−m2L θ̇2 cos θ = 0,

m1 + m2 ÿ −m2L θ̈ cos θ−m2L θ̇2 sin θ + m1 + m2 g = 0,

L2θ̈− L ẍ sin θ + L ÿ cos θ + g L cos θ = 0 .

To solve this system of ODEs in MATLAB®, code the equations into a function before calling the
solver ode45. You can either include the required functions as local functions at the end of a file (as
done here), or save them as separate, named files in a directory on the MATLAB path.

Code Equations

The ode45 solver requires the equations to be written in the form q̇ = f t, q , where q̇ is the first
derivative of each coordinate. In this problem, the solution vector has six components: x, y, the angle
θ, and their first derivatives:
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q =

q1
q2
q3
q4
q5
q6

=

x
ẋ
y
ẏ
θ
θ̇

.

With this notation, you can rewrite the equations of motion entirely in terms of the elements of q:

m1 + m2 q2̇−m2L q6̇ sin q5 = m2L q6
2cos q5,

m1 + m2 q4̇−m2L q6̇ cos q5 = m2L q6
2 sin q5− m1 + m2 g,

L2q6̇− L q2̇ sin q5 + L q4̇ cos q5 = − g L cos q5 .

Unfortunately, the equations of motion do not fit into the form q̇ = f t, q  required by the solver, since
there are several terms on the left with first derivatives. When this occurs, you must use a mass
matrix to represent the left side of the equation.

With matrix notation, you can rewrite the equations of motion as a system of six equations using a
mass matrix in the form M t, q q̇ = f t, q . The mass matrix expresses the linear combinations of first
derivatives on the left side of the equation with a matrix-vector product. In this form, the system of
equations becomes:

1 0 0 0 0 0
0 m1 + m2 0 0 0 −m2L sin q5
0 0 1 0 0 0
0 0 0 m1 + m2 0 m2L cos q5
0 0 0 0 1 0

0 −L sin q5 0 L cos q5 0 L2

q1̇

q2̇

q3̇

q4̇

q5̇

q6̇

=

q2

m2L q6
2cos q5

q4

m2L q6
2 sin q5− m1 + m2 g

q6
−g L cos q5

From this expression, you can write a function that calculates the nonzero elements of the mass
matrix. The function takes three inputs: t and the solution vector q are required (you must specify
these inputs even if they are not used in the body of the function), and P is an optional extra input
used to pass in parameter values. To pass the parameters for this problem to the function, create P as
a structure that holds the parameter values and then use the technique described in “Parameterizing
Functions” on page 10-2 to pass the structure to the function as an extra input.

function M = mass(t,q,P)
% Extract parameters
m1 = P.m1;
m2 = P.m2;
L = P.L;
g = P.g;

% Mass matrix function
M = zeros(6,6);
M(1,1) = 1;
M(2,2) = m1 + m2;
M(2,6) = -m2*L*sin(q(5));
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M(3,3) = 1;
M(4,4) = m1 + m2;
M(4,6) = m2*L*cos(q(5));
M(5,5) = 1;
M(6,2) = -L*sin(q(5));
M(6,4) = L*cos(q(5));
M(6,6) = L^2;
end

Next, you can write a function for the right side of each of the equations in the system
M t, q q̇ = f t, q . Like the mass matrix function, this function takes two required inputs for t and q,
and one optional input for parameter values P.

function dydt = f(t,q,P)
% Extract parameters
m1 = P.m1;
m2 = P.m2;
L = P.L;
g = P.g;

% Equation to solve
dydt = [q(2)
        m2*L*q(6)^2*cos(q(5))
        q(4)
        m2*L*q(6)^2*sin(q(5))-(m1+m2)*g
        q(6)
        -g*L*cos(q(5))];
end

Solve System of Equations

First, create a structure P of parameter values for m1, m2, g, and L by setting appropriately named
fields in a structure. The structure P is passed to the mass matrix and ODE functions as an extra
input.

P.m1 = 0.1;
P.m2 = 0.1;
P.L = 1;
P.g = 9.81

P = struct with fields:
    m1: 0.1000
    m2: 0.1000
     L: 1
     g: 9.8100

Create a vector with 25 points between 0 and 4 for the time span of the integration. When you specify
a vector of times, ode45 returns interpolated solutions at the requested times.

tspan = linspace(0,4,25);

Set the initial conditions of the problem. Since the baton is thrown upward at an angle, use nonzero
values for the initial velocities, x0̇ = 4, y0̇ = 20, and θ0̇ = 2. For the initial positions, the baton begins
in an upright position, so θ0 = − π/2, x0 = 0, and y0 = L.

y0 = [0; 4; P.L; 20; -pi/2; 2];
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Use odeset to create an options structure that references the mass matrix function. Since the solver
expects the mass matrix function to have only two inputs, use an anonymous function to pass in the
parameters P from the workspace.

opts = odeset('Mass',@(t,q) mass(t,q,P));

Finally, solve the system of equations using ode45 with these inputs:

• An anonymous function for the equations @(t,q) f(t,q,P)
• The vector tspan of times where the solution is requested
• The vector y0 of initial conditions
• The options structure opts that references the mass matrix

[t,q] = ode45(@(t,q) f(t,q,P),tspan,y0,opts);

Plot Results

The outputs from ode45 contain the solutions of the equations of motion at each requested time step.
To examine the results, plot the motion of the baton over time.

Loop through each row of the solution, and at each time step, plot the position of the baton. Color
each end of the baton differently so that you can see its rotation over time.

figure
title('Motion of a Thrown Baton, Solved by ODE45');
axis([0 22 0 25])
hold on
for j = 1:length(t)
   theta = q(j,5);
   X = q(j,1);
   Y = q(j,3);
   xvals = [X X+P.L*cos(theta)];
   yvals = [Y Y+P.L*sin(theta)];
   plot(xvals,yvals,xvals(1),yvals(1),'ro',xvals(2),yvals(2),'go')
end
hold off
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Local Functions

Listed here are the local helper functions that the ODE solver calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydt = f(t,q,P) % Equations to solve
% Extract parameters
m1 = P.m1;
m2 = P.m2;
L = P.L;
g = P.g;

% RHS of system of equations
dydt = [q(2)
        m2*L*q(6)^2*cos(q(5))
        q(4)
        m2*L*q(6)^2*sin(q(5))-(m1+m2)*g
        q(6)
        -g*L*cos(q(5))];
end
%------------------------------------------------
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function M = mass(t,q,P) % Mass matrix function
% Extract parameters
m1 = P.m1;
m2 = P.m2;
L = P.L;
g = P.g;

% Set nonzero elements in mass matrix
M = zeros(6,6);
M(1,1) = 1;
M(2,2) = m1 + m2;
M(2,6) = -m2*L*sin(q(5));
M(3,3) = 1;
M(4,4) = m1 + m2;
M(4,6) = m2*L*cos(q(5));
M(5,5) = 1;
M(6,2) = -L*sin(q(5));
M(6,4) = L*cos(q(5));
M(6,6) = L^2;
end

See Also
ode45

More About
• “Choose an ODE Solver” on page 11-2
• “Solve Nonstiff ODEs” on page 11-18
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Solve ODE with Strongly State-Dependent Mass Matrix
This example shows how to solve Burgers' equation using a moving mesh technique [1]. The problem
includes a mass matrix, and options are specified to account for the strong state dependence and
sparsity of the mass matrix, making the solution process more efficient.

Problem Setup

Burgers' equation is a convection-diffusion equation given by

du
dt = ϵd2u

dx2 −
d
dx

u2

2 , 0 < x < 1, t > 0, ϵ = 1 × 10−4 .

For this example, the problem is formulated on a moving mesh of N points, with the boundary and
initial conditions

u 0, t = u 1, t = 0,

u x, 0 = sin 2πx + 1
2sin πx .

The moving mesh technique described in [1] positions the mesh points at each time step so that they
are concentrated in areas of change. Therefore, x depends on time x t , and Burgers' equation is
expressed with partial derivatives as

∂u
∂t −

∂u
∂x
∂x
∂t = ϵ∂

2u
∂x2 −

∂
∂x

u2

2 .

For a given initial mesh of N points, there are 2N equations to solve: N equations corresponding to
Burgers' equation, and N equations determining the movement of each mesh point. So, the final
system of equations is:

∂u1
∂t −

∂u1
∂x1

∂x1
∂t = ϵ

∂2u1
∂x1

2 −
∂
∂x1

u1
2

2 ,

⋮
∂uN
∂t −

∂uN
∂xN

∂xN
∂t = ϵ

∂2uN
∂xN

2 −
∂
∂xN

uN
2

2 ,

∂2x1̇
∂t2 = 1

τ
∂
∂t B x1, t

∂x1
∂t ,

⋮
∂2xṄ
∂t2 = 1

τ
∂
∂t B xN, t

∂xN
∂t .

The terms for the moving mesh correspond to MMPDE6 in [1]. The parameter τ represents a
timescale for forcing the mesh toward equidistribution. The term B x, t  is a monitor function given by
Eq. 21 in [1]:

B x, t = 1 +
∂ui
∂xi

2
.
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The approach used in this example to solve Burgers' equation with moving mesh points demonstrates
several techniques:

• The system of equations is expressed using a mass matrix formulation, M y′ = f t, y . The mass
matrix is provided to the ode15s solver as a function.

• The derivative function not only includes the equations for Burgers' equation, but also a set of
equations governing the moving mesh selection.

• The sparsity patterns of the Jacobian dF/dy and the derivative of the mass matrix multiplied with a
vector d Mv /dy are supplied to the solver as functions. Supplying these sparsity patterns helps
the solver operate more efficiently.

• Finite differences are used to approximate several partial derivatives.

To solve this equation in MATLAB®, write a derivative function, a mass matrix function, a function for
the sparsity pattern of the Jacobian dF/dy, and a function for the sparsity pattern of d Mv /dy. You
can either include the required functions as local functions at the end of a file (as done here), or save
them as separate, named files in a directory on the MATLAB path.

Code Mass Matrix

The left side of the system of equations involves linear combinations of first derivatives, so a mass
matrix is required to represent all of the terms. Set the left side of the system of equations equal to
M y′ to extract the form of the mass matrix. The mass matrix is composed of four blocks, each of
which is a square matrix of order N:

∂u1
∂t −

∂u1
∂x1

∂x1
∂t

⋮
∂uN
∂t −

∂uN
∂xN

∂xN
∂t

∂2x1̇
∂t2

⋮
∂2xṄ
∂t2

= M y′ =
M1 M2
M3 M4

u1̇

⋮
uṄ

x1̇

⋮
xṄ

.

This formulation shows that M1 and M2 form the left side of Burgers' equations (the first N equations
in the system), while M3 and M4 form the left side of the mesh equations (the last N equations in the
system). The block matrices are:

M1 = IN,

M2 = −
∂ui
∂xi

IN,

M3 = 0N,

M4 = ∂2

∂t2 IN .

IN is the N × N identify matrix. The partial derivatives in M2 are estimated using finite differences,
while the partial derivative in M4 uses a Laplacian matrix. Notice that M3 contains only zeros because
none of the equations for the mesh movement depend on u̇.
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Now you can write a function that computes the mass matrix. The function must accept two inputs for
time t and the solution vector y. Since the solution vector y contains half u̇ components and half ẋ
components, the function extracts these first. Then, the function forms all of the block matrices
(taking the boundary values of the problem into account) and assembles the mass matrix using the
four blocks.

function M = mass(t,y)
% Extract the components of y for the solution u and mesh x
N = length(y)/2; 
u = y(1:N);
x = y(N+1:end);

% Boundary values of solution u and mesh x
u0 = 0;
uNP1 = 0;
x0 = 0;
xNP1 = 1;

% M1 and M2 are the portions of the mass matrix for Burgers' equation. 
% The derivative du/dx is approximated with finite differences, using 
% single-sided differences on the edges and centered differences in between.
M1 = speye(N);
M2 = sparse(N,N);
M2(1,1) = - (u(2) - u0)/(x(2) - x0);
for i = 2:N-1
    M2(i,i) = - (u(i+1) - u(i-1))/(x(i+1) - x(i-1));
end
M2(N,N) = - (uNP1 - u(N-1))/(xNP1 - x(N-1));

% M3 and M4 define the equations for mesh point evolution, corresponding to 
% MMPDE6 in the reference paper. Since the mesh functions only involve d/dt(dx/dt), 
% the M3 portion of the mass matrix is all zeros. The second derivative in M4 is 
% approximated using a finite difference Laplacian matrix. 
M3 = sparse(N,N);
e = ones(N,1);
M4 = spdiags([e -2*e e],-1:1,N,N);

% Assemble mass matrix
M = [M1 M2
     M3 M4];
end

Note: All functions are included as local functions at the end of the example.

Code Derivative Function

The derivative function for this problem returns a vector with 2N elements. The first N elements
correspond to Burgers' equations, while the last N elements are for the moving mesh equations. The
function movingMeshODE goes through these steps to evaluate the right-hand sides of all the
equations in the system:

1 Evaluate Burgers' equations using finite differences (first N elements).
2 Evaluate monitor function (last N elements).
3 Apply spatial smoothing to monitor function and evaluate moving mesh equations.

The first N equations in the derivative function encode the right side of Burgers' equations. Burgers'
equations can be considered as a differential operator involving spatial derivatives of the form:
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f u = ϵ ∂
2u
∂x2 −

∂
∂x

u2
2 .

The reference paper [1] describes the process of approximating the differential operator f  using
centered finite differences by

f i = ϵ

ui + 1− ui
xi + 1− xi

−
ui− ui− 1
xi− xi− 1

1
2 xi + 1− xi− 1

− 1
2

ui + 1
2 − ui− 1

2

xi + 1− xi− 1
.

On the edges of the mesh (for which i = 1 and i = N), only single-sided differences are used instead.
This example uses ϵ = 1 × 10−4.

The equations governing the mesh (comprising the last N equations in the derivative function) are

∂2ẋ
∂t2 = 1

τ
∂
∂t B x, t ∂x∂t .

Just as with Burgers' equations, you can use finite differences to approximate the monitor function
B x, t :

B x, t = 1 +
∂ui
∂xi

2
= 1 +

ui + 1− ui− 1
xi + 1− xi− 1

2
.

Once the monitor function is evaluated, spatial smoothing is applied (Equations 14 and 15 in [1]).
This example uses γ = 2 and p = 2 for the spatial smoothing parameters.

The function encoding the system of equations is

function g = movingMeshODE(t,y)
% Extract the components of y for the solution u and mesh x
N = length(y)/2;
u = y(1:N);
x = y(N+1:end);

% Boundary values of solution u and mesh x
u0 = 0;
uNP1 = 0;
x0 = 0;
xNP1 = 1;

% Preallocate g vector of derivative values.
g = zeros(2*N,1);

% Use centered finite differences to approximate the RHS of Burgers'
% equations (with single-sided differences on the edges). The first N
% elements in g correspond to Burgers' equations.
for i = 2:N-1
    delx = x(i+1) - x(i-1);
    g(i) = 1e-4*((u(i+1) - u(i))/(x(i+1) - x(i)) - ...
        (u(i) - u(i-1))/(x(i) - x(i-1)))/(0.5*delx) ...
        - 0.5*(u(i+1)^2 - u(i-1)^2)/delx;
end
delx = x(2) - x0;
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g(1) = 1e-4*((u(2) - u(1))/(x(2) - x(1)) - (u(1) - u0)/(x(1) - x0))/(0.5*delx) ...
    - 0.5*(u(2)^2 - u0^2)/delx;
delx = xNP1 - x(N-1);
g(N) = 1e-4*((uNP1 - u(N))/(xNP1 - x(N)) - ...
    (u(N) - u(N-1))/(x(N) - x(N-1)))/delx - ...
    0.5*(uNP1^2 - u(N-1)^2)/delx;

% Evaluate the monitor function values (Eq. 21 in reference paper), used in
% RHS of mesh equations. Centered finite differences are used for interior
% points, and single-sided differences are used on the edges.
M = zeros(N,1);
for i = 2:N-1
    M(i) = sqrt(1 + ((u(i+1) - u(i-1))/(x(i+1) - x(i-1)))^2);
end
M0 = sqrt(1 + ((u(1) - u0)/(x(1) - x0))^2);
M(1) = sqrt(1 + ((u(2) - u0)/(x(2) - x0))^2);
M(N) = sqrt(1 + ((uNP1 - u(N-1))/(xNP1 - x(N-1)))^2);
MNP1 = sqrt(1 + ((uNP1 - u(N))/(xNP1 - x(N)))^2);

% Apply spatial smoothing (Eqns. 14 and 15) with gamma = 2, p = 2.
SM = zeros(N,1);
for i = 3:N-2
    SM(i) = sqrt((4*M(i-2)^2 + 6*M(i-1)^2 + 9*M(i)^2 + ...
        6*M(i+1)^2 + 4*M(i+2)^2)/29);
end
SM0 = sqrt((9*M0^2 + 6*M(1)^2 + 4*M(2)^2)/19);
SM(1) = sqrt((6*M0^2 + 9*M(1)^2 + 6*M(2)^2 + 4*M(3)^2)/25);
SM(2) = sqrt((4*M0^2 + 6*M(1)^2 + 9*M(2)^2 + 6*M(3)^2 + 4*M(4)^2)/29);
SM(N-1) = sqrt((4*M(N-3)^2 + 6*M(N-2)^2 + 9*M(N-1)^2 + 6*M(N)^2 + 4*MNP1^2)/29);
SM(N) = sqrt((4*M(N-2)^2 + 6*M(N-1)^2 + 9*M(N)^2 + 6*MNP1^2)/25);
SMNP1 = sqrt((4*M(N-1)^2 + 6*M(N)^2 + 9*MNP1^2)/19);
for i = 2:N-1
    g(i+N) = (SM(i+1) + SM(i))*(x(i+1) - x(i)) - ...
        (SM(i) + SM(i-1))*(x(i) - x(i-1));
end
g(1+N) = (SM(2) + SM(1))*(x(2) - x(1)) - (SM(1) + SM0)*(x(1) - x0);
g(N+N) = (SMNP1 + SM(N))*(xNP1 - x(N)) - (SM(N) + SM(N-1))*(x(N) - x(N-1));

% Form final discrete approximation for Eq. 12 in reference paper, the equation governing
% the mesh points.
tau = 1e-3;
g(1+N:end) = - g(1+N:end)/(2*tau);
end

Code Functions for Sparsity Patterns

The Jacobian dF/dy for the derivative function is a 2N × 2N matrix containing all of the partial
derivatives of the derivative function, movingMeshODE. ode15s estimates the Jacobian using finite
differences when the matrix is not supplied in the options structure. You can supply the sparsity
pattern of the Jacobian to help ode15s calculate it more quickly.

The function for the sparsity pattern of the Jacobian is

function out = JPat(N)
S1 = spdiags(ones(N,3),-1:1,N,N);
S2 = spdiags(ones(N,9),-4:4,N,N);
out = [S1 S1
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       S2 S2];
end

Plot the sparsity pattern of dF/dy for N = 80 using spy.

spy(JPat(80))

Another way to make the calculation more efficient is to provide the sparsity pattern of d Mv /dy. You
can find this sparsity pattern by examining which terms of ui and xi are present in the finite
differences calculated in the mass matrix function.

The function for the sparsity pattern of d Mv /dy is

function S = MvPat(N)
S = sparse(2*N,2*N);
S(1,2) = 1;
S(1,2+N) = 1;
for i = 2:N-1
    S(i,i-1) = 1;
    S(i,i+1) = 1;
    S(i,i-1+N) = 1;
    S(i,i+1+N) = 1;
end
S(N,N-1) = 1;
S(N,N-1+N) = 1;
end

Plot the sparsity pattern of d Mv /dy for N = 80 using spy.
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spy(MvPat(80))

Solve System of Equations

Solve the system with the value N = 80. For the initial conditions, initialize x with a uniform grid and
evaluate u x, 0  on the grid.

N = 80;
h = 1/(N+1);
xinit = h*(1:N);
uinit = sin(2*pi*xinit) + 0.5*sin(pi*xinit);
y0 = [uinit xinit];

Use odeset to create an options structure that sets several values:

• A function handle for the mass matrix
• The state-dependence of the mass matrix, which for this problem is 'strong' since the mass

matrix is a function of both t and y
• A function handle that calculates the Jacobian sparsity pattern
• A function handle that calculates the sparsity pattern of the derivative of the mass matrix

multiplied by a vector
• The absolute and relative error tolerances

opts = odeset('Mass',@mass,'MStateDependence','strong','JPattern',JPat(N),...
   'MvPattern',MvPat(N),'RelTol',1e-5,'AbsTol',1e-4);
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Finally, call ode15s to solve the system on the interval 0, 1  using the movingMeshODE derivative
function, the time span, the initial conditions, and the options structure.

tspan = [0 1];
sol = ode15s(@movingMeshODE,tspan,y0,opts);

Plot Results

The result of the integration is a structure sol that contains the time steps t, the mesh points x t ,
and the solution u x, t . Extract these values from the structure.

t = sol.x;
x = sol.y(N+1:end,:);
u = sol.y(1:N,:);

Plot the movement of the mesh points over time. The plot shows that the mesh points retain a
reasonably even spacing over time (due to the monitor function), but they are able to cluster near the
discontinuity in the solution as it moves.

plot(x,t)
xlabel('t')
ylabel('x(t)')
title('Burgers'' equation: Trajectories of grid points')

Now, sample u x, t  at a few values of t and plot the evolution of the solution over time. The mesh
points at the ends of the interval are fixed, so x(0) = 0 and x(N+1) = 1. The boundary values are
u(t,0) = 0 and u(t,1) = 0, which you must add to the known values computed for the figure.
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tint = 0:0.2:1;
yint = deval(sol,tint);
figure
labels = {};
for j = 1:length(tint)
   solution = [0; yint(1:N,j); 0];
   location = [0; yint(N+1:end,j); 1];
   labels{j} = ['t = ' num2str(tint(j))];
   plot(location,solution,'-o')
   hold on
end
xlabel('x')
ylabel('solution u(x,t)')
legend(labels{:},'Location','SouthWest')
title('Burgers equation on moving mesh')
hold off

The plot shows that u x, 0  is a smooth wave that develops a steep gradient over time as it moves
towards x = 1. The mesh points track the movement of the discontinuity so that extra evaluation
points are in the appropriate position in each time step.
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Local Functions

Listed here are the local helper functions that the solver ode15s calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function g = movingMeshODE(t,y)
% Extract the components of y for the solution u and mesh x
N = length(y)/2;
u = y(1:N);
x = y(N+1:end);

% Boundary values of solution u and mesh x
u0 = 0;
uNP1 = 0;
x0 = 0;
xNP1 = 1;

% Preallocate g vector of derivative values.
g = zeros(2*N,1);

% Use centered finite differences to approximate the RHS of Burgers'
% equations (with single-sided differences on the edges). The first N
% elements in g correspond to Burgers' equations.
for i = 2:N-1
    delx = x(i+1) - x(i-1);
    g(i) = 1e-4*((u(i+1) - u(i))/(x(i+1) - x(i)) - ...
        (u(i) - u(i-1))/(x(i) - x(i-1)))/(0.5*delx) ...
        - 0.5*(u(i+1)^2 - u(i-1)^2)/delx;
end
delx = x(2) - x0;
g(1) = 1e-4*((u(2) - u(1))/(x(2) - x(1)) - (u(1) - u0)/(x(1) - x0))/(0.5*delx) ...
    - 0.5*(u(2)^2 - u0^2)/delx;
delx = xNP1 - x(N-1);
g(N) = 1e-4*((uNP1 - u(N))/(xNP1 - x(N)) - ...
    (u(N) - u(N-1))/(x(N) - x(N-1)))/delx - ...
    0.5*(uNP1^2 - u(N-1)^2)/delx;

% Evaluate the monitor function values (Eq. 21 in reference paper), used in
% RHS of mesh equations. Centered finite differences are used for interior
% points, and single-sided differences are used on the edges.
M = zeros(N,1);
for i = 2:N-1
    M(i) = sqrt(1 + ((u(i+1) - u(i-1))/(x(i+1) - x(i-1)))^2);
end
M0 = sqrt(1 + ((u(1) - u0)/(x(1) - x0))^2);
M(1) = sqrt(1 + ((u(2) - u0)/(x(2) - x0))^2);
M(N) = sqrt(1 + ((uNP1 - u(N-1))/(xNP1 - x(N-1)))^2);
MNP1 = sqrt(1 + ((uNP1 - u(N))/(xNP1 - x(N)))^2);

% Apply spatial smoothing (Eqns. 14 and 15) with gamma = 2, p = 2.
SM = zeros(N,1);
for i = 3:N-2
    SM(i) = sqrt((4*M(i-2)^2 + 6*M(i-1)^2 + 9*M(i)^2 + ...
        6*M(i+1)^2 + 4*M(i+2)^2)/29);
end
SM0 = sqrt((9*M0^2 + 6*M(1)^2 + 4*M(2)^2)/19);
SM(1) = sqrt((6*M0^2 + 9*M(1)^2 + 6*M(2)^2 + 4*M(3)^2)/25);
SM(2) = sqrt((4*M0^2 + 6*M(1)^2 + 9*M(2)^2 + 6*M(3)^2 + 4*M(4)^2)/29);
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SM(N-1) = sqrt((4*M(N-3)^2 + 6*M(N-2)^2 + 9*M(N-1)^2 + 6*M(N)^2 + 4*MNP1^2)/29);
SM(N) = sqrt((4*M(N-2)^2 + 6*M(N-1)^2 + 9*M(N)^2 + 6*MNP1^2)/25);
SMNP1 = sqrt((4*M(N-1)^2 + 6*M(N)^2 + 9*MNP1^2)/19);
for i = 2:N-1
    g(i+N) = (SM(i+1) + SM(i))*(x(i+1) - x(i)) - ...
        (SM(i) + SM(i-1))*(x(i) - x(i-1));
end
g(1+N) = (SM(2) + SM(1))*(x(2) - x(1)) - (SM(1) + SM0)*(x(1) - x0);
g(N+N) = (SMNP1 + SM(N))*(xNP1 - x(N)) - (SM(N) + SM(N-1))*(x(N) - x(N-1));

% Form final discrete approximation for Eq. 12 in reference paper, the equation governing
% the mesh points.
tau = 1e-3;
g(1+N:end) = - g(1+N:end)/(2*tau);
end

% -----------------------------------------------------------------------
function M = mass(t,y)
% Extract the components of y for the solution u and mesh x
N = length(y)/2; 
u = y(1:N);
x = y(N+1:end);

% Boundary values of solution u and mesh x
u0 = 0;
uNP1 = 0;
x0 = 0;
xNP1 = 1;

% M1 and M2 are the portions of the mass matrix for Burgers' equation. 
% The derivative du/dx is approximated with finite differences, using 
% single-sided differences on the edges and centered differences in between.
M1 = speye(N);
M2 = sparse(N,N);
M2(1,1) = - (u(2) - u0)/(x(2) - x0);
for i = 2:N-1
    M2(i,i) = - (u(i+1) - u(i-1))/(x(i+1) - x(i-1));
end
M2(N,N) = - (uNP1 - u(N-1))/(xNP1 - x(N-1));

% M3 and M4 define the equations for mesh point evolution, corresponding to 
% MMPDE6 in the reference paper. Since the mesh functions only involve d/dt(dx/dt), 
% the M3 portion of the mass matrix is all zeros. The second derivative in M4 is 
% approximated using a finite difference Laplacian matrix. 
M3 = sparse(N,N);
e = ones(N,1);
M4 = spdiags([e -2*e e],-1:1,N,N);

% Assemble mass matrix
M = [M1 M2
     M3 M4];
end

% -------------------------------------------------------------------------
function out = JPat(N)  % Jacobian sparsity pattern
S1 = spdiags(ones(N,3),-1:1,N,N);
S2 = spdiags(ones(N,9),-4:4,N,N);
out = [S1 S1
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    S2 S2];
end

% -------------------------------------------------------------------------
function S = MvPat(N)  % Sparsity pattern for the derivative of the Mass matrix times a vector
S = sparse(2*N,2*N);
S(1,2) = 1;
S(1,2+N) = 1;
for i = 2:N-1
    S(i,i-1) = 1;
    S(i,i+1) = 1;
    S(i,i-1+N) = 1;
    S(i,i+1+N) = 1;
end
S(N,N-1) = 1;
S(N,N-1+N) = 1;
end
% -------------------------------------------------------------------------

See Also
ode15s | odeset

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-10
• “Solve Equations of Motion for Baton Thrown into Air” on page 11-55
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Solve Stiff Transistor Differential Algebraic Equation
This example shows how to use ode23t to solve a stiff differential algebraic equation (DAE) that
describes an electrical circuit [1]. The one-transistor amplifier problem coded in the example file
amp1dae.m can be rewritten in semi-explicit form, but this example solves it in its original form
Mu′ = ϕ(u). The problem includes a constant, singular mass matrix M.

The transistor amplifier circuit contains six resistors, three capacitors, and a transistor.

• The initial voltage signal is Ue(t) = 0 . 4sin 200πt .
• The operating voltage is Ub = 6.
• The voltages at the nodes are given by Ui t i = 1, 2, 3, 4, 5 .
• The values of the resistors Ri i = 1, 2, 3, 4, 5, 6  are constant, and the current through each

resistor satisfies I = U/R.
• The values of the capacitors Ci i = 1, 2, 3  are constant, and the current through each capacitor
satisfies I = C ⋅ dU/dt.

The goal is to solve for the output voltage through node 5, U5 t .

To solve this equation in MATLAB®, you need to code the equations, code a mass matrix, and set the
initial conditions and interval of integration before calling the solver ode23t. You can either include
the required functions as local functions at the end of a file (as done here), or save them as separate,
named files in a directory on the MATLAB path.

Code Mass Matrix

Using Kirchoff's law to equalize the current through each node (1 through 5), you can obtain a system
of five equations describing the circuit:
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node 1:
Ue t

R0
−

U1
R0

+ C1 U2′−U1′ = 0,

node 2:
Ub
R2
−U2

1
R1

+ 1
R2

+ C1 U1′−U2′ − 0 . 01f U2−U3 = 0,

node 3: f U2−U3 −
U3
R3
− C2U3′ = 0,

node 4:
Ub
R4
−

U4
R4

+ C3 U5′−U4′ − 0 . 99f U2−U3 = 0,

node 5: −
U5
R5

+ C3 U4′−U5′ = 0 .

The mass matrix of this system, found by collecting the derivative terms on the left side of the
equations, has the form

M =

−c1 c1 0 0 0
c1 −c1 0 0 0
0 0 −c2 0 0
0 0 0 −c3 c3
0 0 0 c3 −c3

,

where ck = k × 10−6 for k = 1, 2, 3.

Create a mass matrix with the appropriate constants ck, and then use the odeset function to specify
the mass matrix. Even though it is apparent that the mass matrix is singular, leave the
'MassSingular' option at its default value of 'maybe' to test the automatic detection of a DAE
problem by the solver.

c = 1e-6 * (1:3);
M = zeros(5,5);
M(1,1) = -c(1);
M(1,2) =  c(1);
M(2,1) =  c(1);
M(2,2) = -c(1);
M(3,3) = -c(2);
M(4,4) = -c(3);
M(4,5) =  c(3);
M(5,4) =  c(3);
M(5,5) = -c(3);
opts = odeset('Mass',M);

Code Equations

The function transampdae contains the system of equations for this example. The function defines
values for all of the voltages and constant parameters. The derivatives gathered on the left side of the
equations are coded in the mass matrix, and transampdae codes the right side of the equations.

function dudt = transampdae(t,u)
% Define voltages and parameters
Ue = @(t) 0.4*sin(200*pi*t);
Ub = 6;
R0 = 1000;
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R15 = 9000;
alpha = 0.99;
beta = 1e-6;
Uf = 0.026;

% Define system of equations
f23 = beta*(exp((u(2) - u(3))/Uf) - 1);
dudt = [ -(Ue(t) - u(1))/R0
    -(Ub/R15 - u(2)*2/R15 - (1-alpha)*f23)
    -(f23 - u(3)/R15)
    -((Ub - u(4))/R15 - alpha*f23)
    (u(5)/R15) ];
end

Note: This function is included as a local function at the end of the example.

Code Initial Conditions

Set the initial conditions. This example uses the consistent initial conditions for the current through
each node computed in [1].

Ub = 6;
u0(1) = 0;
u0(2) = Ub/2;
u0(3) = Ub/2;
u0(4) = Ub;
u0(5) = 0;

Solve System of Equations

Solve the DAE system over the time interval [0 0.05] using ode23t.

tspan = [0 0.05];
[t,u] = ode23t(@transampdae,tspan,u0,opts);

Plot Results

Plot the initial voltage Ue(t) and output voltage U5(t).

Ue = @(t) 0.4*sin(200*pi*t);
plot(t,Ue(t),'o',t,u(:,5),'.')
axis([0 0.05 -3 2]);
legend('Input Voltage U_e(t)','Output Voltage U_5(t)','Location','NorthWest');
title('One Transistor Amplifier DAE Problem Solved by ODE23T');
xlabel('t');
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Local Functions

Listed here is the local helper function that the ODE solver ode23t calls to calculate the solution.
Alternatively, you can save this function as its own file in a directory on the MATLAB path.

function dudt = transampdae(t,u)
% Define voltages and parameters
Ue = @(t) 0.4*sin(200*pi*t);
Ub = 6;
R0 = 1000;
R15 = 9000;
alpha = 0.99;
beta = 1e-6;
Uf = 0.026;

% Define system of equations
f23 = beta*(exp((u(2) - u(3))/Uf) - 1);
dudt = [ -(Ue(t) - u(1))/R0
    -(Ub/R15 - u(2)*2/R15 - (1-alpha)*f23)
    -(f23 - u(3)/R15)
    -((Ub - u(4))/R15 - alpha*f23)
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    (u(5)/R15) ];
end

See Also
ode15s | ode23t

More About
• “Choose an ODE Solver” on page 11-2
• “Summary of ODE Options” on page 11-10
• “Solve Differential Algebraic Equations (DAEs)” on page 11-29
• “Solve ODE with Strongly State-Dependent Mass Matrix” on page 11-61
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Solve System of ODEs with Multiple Initial Conditions
This example compares two techniques to solve a system of ordinary differential equations with
multiple sets of initial conditions. The techniques are:

• Use a for-loop to perform several simulations, one for each set of initial conditions. This
technique is simple to use but does not offer the best performance for large systems.

• Vectorize the ODE function to solve the system of equations for all sets of initial conditions
simultaneously. This technique is the faster method for large systems but requires rewriting the
ODE function so that it reshapes the inputs properly.

The equations used to demonstrate these techniques are the well-known Lotka-Volterra equations,
which are first-order nonlinear differential equations that describe the populations of predators and
prey.

Problem Description

The Lotka-Volterra equations are a system of two first-order, nonlinear ODEs that describe the
populations of predators and prey in a biological system. Over time, the populations of the predators
and prey change according to the equations

dx
dt = αx− βxy,

dy
dt = δxy− γy .

The variables in these equations are

• x is the population size of the prey
• y is the population size of the predators
• t is time
• α, β, δ, and γ are constant parameters that describe the interactions between the two species. This

example uses the parameter values α = γ = 1, β = 0 . 01, and δ = 0 . 02.

For this problem, the initial values for x and y are the initial population sizes. Solving the equations
then provides information about how the populations change over time as the species interact.

Solve Equations with One Initial Condition

To solve the Lotka-Volterra equations in MATLAB, write a function that encodes the equations, specify
a time interval for the integration, and specify the initial conditions. Then you can use one of the ODE
solvers, such as ode45, to simulate the system over time.

A function that encodes the equations is

function dpdt = lotkaODE(t,p)
% LOTKA Lotka-Volterra predator-prey model
delta = 0.02;
beta = 0.01;

dpdt = [p(1) .* (1 - beta*p(2));
        p(2) .* (-1 + delta*p(1))];
end
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(This function is included as a local function at the end of the example.)

Since there are two equations in the system, dpdt is a vector with one element for each equation.
Also, the solution vector p has one element for each solution component: p(1) represents x in the
original equations, and p(2) represents y in the original equations.

Next, specify the time interval for integration as 0, 15  and set the initial population sizes for x and y
to 50.

t0 = 0;
tfinal = 15;
p0 = [50; 50];

Solve the system with ode45 by specifying the ODE function, the time span, and the initial
conditions. Plot the resulting populations versus time.

[t,p] = ode45(@lotkaODE,[t0 tfinal],p0);
plot(t,p)
title('Predator/Prey Populations Over Time')
xlabel('t')
ylabel('Population')
legend('Prey','Predators')

Since the solutions exhibit periodicity, plot the solutions against each other in a phase plot.

plot(p(:,1),p(:,2))
title('Phase Plot of Predator/Prey Populations')
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xlabel('Prey')
ylabel('Predators')

The resulting plots show the solution for the given initial population sizes. To solve the equations for
different initial population sizes, change the values in p0 and rerun the simulation. However, this
method only solves the equations for one initial condition at a time. The next two sections describe
techniques to solve for many different initial conditions.

Method 1: Compute Multiple Initial Conditions with for-loop

The simplest way to solve a system of ODEs for multiple initial conditions is with a for-loop. This
technique uses the same ODE function as the single initial condition technique, but the for-loop
automates the solution process.

For example, you can hold the initial population size for x constant at 50, and use the for-loop to vary
the initial population size for y between 10 and 400. Create a vector of population sizes for y0, and
then loop over the values to solve the equations for each set of initial conditions. Plot a phase plot
with the results from all iterations.

y0 = 10:10:400;
for k = 1:length(y0)
    [t,p] = ode45(@lotkaODE,[t0 tfinal],[50 y0(k)]);
    plot(p(:,1),p(:,2))
    hold on
end
title('Phase Plot of Predator/Prey Populations')
xlabel('Prey')
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ylabel('Predators')
hold off

The phase plot shows all of the computed solutions for the different sets of initial conditions.

Method 2: Compute Multiple Initial Conditions with Vectorized ODE Function

Another method to solve a system of ODEs for multiple initial conditions is to rewrite the ODE
function so that all of the equations are solved simultaneously. The steps to do this are:

• Provide all of the initial conditions to ode45 as a matrix. The size of the matrix is s-by-n, where s
is the number of solution components and n is the number of initial conditions being solved for.
Each column in the matrix then represents one complete set of initial conditions for the system.

• The ODE function must accept an extra input parameter for n, the number of initial conditions.
• Inside the ODE function, the solver passes the solution components p as a column vector. The ODE

function must reshape the vector into a matrix with size s-by-n. Each row of the matrix then
contains all of the initial conditions for each variable.

• The ODE function must solve the equations in a vectorized format, so that the expression accepts
vectors for the solution components. In other words, f(t,[y1 y2 y3 ...]) must return
[f(t,y1) f(t,y2) f(t,y3) ...].

• Finally, the ODE function must reshape its output back into a vector so that the ODE solver
receives a vector back from each function call.

If you follow these steps, then the ODE solver can solve the system of equations using a vector for the
solution components, while the ODE function reshapes the vector into a matrix and solves each
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solution component for all of the initial conditions. The result is that you can solve the system for all
of the initial conditions in one simulation.

To implement this method for the Lotka-Volterra system, start by finding the number of initial
conditions n, and then form a matrix of initial conditions.

n = length(y0);
p0_all = [50*ones(n,1) y0(:)]';

Next, rewrite the ODE function so that it accepts n as an input. Use n to reshape the solution vector
into a matrix, then solve the vectorized system and reshape the output back into a vector. A modified
ODE function that performs these tasks is

function dpdt = lotkasystem(t,p,n)
%LOTKA  Lotka-Volterra predator-prey model for system of inputs p.
delta = 0.02;
beta = 0.01;

% Change the size of p to be: Number of equations-by-number of initial
% conditions.
p = reshape(p,[],n);

% Write equations in vectorized form.
dpdt = [p(1,:) .* (1 - beta*p(2,:)); 
        p(2,:) .* (-1 + delta*p(1,:))];

% Linearize output.
dpdt = dpdt(:);
end

Solve the system of equations for all of the initial conditions using ode45. Since ode45 requires the
ODE function to accept two inputs, use an anonymous function to pass in the value of n from the
workspace to lotkasystem.

[t,p] = ode45(@(t,p) lotkasystem(t,p,n),[t0 tfinal],p0_all);

Reshape the output vector into a matrix with size (numTimeSteps*s)-by-n. Each column of the
output p(:,k) contains the solutions for one set of initial conditions. Plot a phase plot of the solution
components.

p = reshape(p,[],n);
nt = length(t);
for k = 1:n
    plot(p(1:nt,k),p(nt+1:end,k))
    hold on
end
title('Predator/Prey Populations Over Time')
xlabel('t')
ylabel('Population')
hold off
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The results are comparable to those obtained by the for-loop technique. However, there are some
properties of the vectorized solution technique that you should keep in mind:

• The calculated solutions can be slightly different than those computed from a single initial input.
The difference arises because the ODE solver applies norm checks to the entire system to
calculate the size of the time steps, so the time-stepping behavior of the solution is slightly
different. The change in time steps generally does not affect the accuracy of the solution, but
rather which times the solution is evaluated at.

• For stiff ODE solvers (ode15s, ode23s, ode23t, ode23tb) that automatically evaluate the
numerical Jacobian of the system, specifying the block diagonal sparsity pattern of the Jacobian
using the JPattern option of odeset can improve the efficiency of the calculation. The block
diagonal form of the Jacobian arises from the input reshaping performed in the rewritten ODE
function.

Compare Timing Results

Time each of the previous methods using timeit. The timing for solving the equations with one set
of initial conditions is included as a baseline number to see how the methods scale.

% Time one IC
baseline = timeit(@() ode45(@lotkaODE,[t0 tfinal],p0),2);

% Time for-loop
for k = 1:length(y0)
    loop_timing(k) = timeit(@() ode45(@lotkaODE,[t0 tfinal],[50 y0(k)]),2);
end
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loop_timing = sum(loop_timing);

% Time vectorized fcn
vectorized_timing = timeit(@() ode45(@(t,p) lotkasystem(t,p,n),[t0 tfinal],p0_all),2);

Create a table with the timing results. Multiply all of the results by 1e3 to express the times in
milliseconds. Include a column with the time per solution, which divides each time by the number of
initial conditions being solved for.

TimingTable = table(1e3.*[baseline; loop_timing; vectorized_timing], 1e3.*[baseline; loop_timing/n; vectorized_timing/n],...
    'VariableNames',{'TotalTime (ms)','TimePerSolution (ms)'},'RowNames',{'One IC','Multi ICs: For-loop', 'Mult ICs: Vectorized'})

TimingTable=3×2 table
                            TotalTime (ms)    TimePerSolution (ms)
                            ______________    ____________________

    One IC                     0.64579               0.64579      
    Multi ICs: For-loop         21.592               0.53979      
    Mult ICs: Vectorized         1.547              0.038674      

The TimePerSolution column shows that the vectorized technique is the fastest of the three
methods.

Local Functions

Listed here are the local functions that ode45 calls to calculate the solutions.

function dpdt = lotkaODE(t,p)
% LOTKA Lotka-Volterra predator-prey model
delta = 0.02;
beta = 0.01;

dpdt = [p(1) .* (1 - beta*p(2));
        p(2) .* (-1 + delta*p(1))];
end
%------------------------------------------------------------------
function dpdt = lotkasystem(t,p,n)
%LOTKA  Lotka-Volterra predator-prey model for system of inputs p.
delta = 0.02;
beta = 0.01;

% Change the size of p to be: Number of equations-by-number of initial
% conditions.
p = reshape(p,[],n);

% Write equations in vectorized form.
dpdt = [p(1,:) .* (1 - beta*p(2,:)); 
        p(2,:) .* (-1 + delta*p(1,:))];

% Linearize output.
dpdt = dpdt(:);
end

See Also
ode45 | odeset
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More About
• “Choose an ODE Solver” on page 11-2
• “Solve Predator-Prey Equations” on page 11-51
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Boundary Value Problems (BVPs)

• “Solving Boundary Value Problems” on page 12-2
• “Solve BVP with Two Solutions” on page 12-8
• “Solve BVP with Unknown Parameter” on page 12-11
• “Solve BVP Using Continuation” on page 12-15
• “Verify BVP Consistency Using Continuation” on page 12-20
• “Solve BVP with Singular Term” on page 12-25
• “Solve BVP with Multiple Boundary Conditions” on page 12-29
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Solving Boundary Value Problems
In a boundary value problem (BVP), the goal is to find a solution to an ordinary differential equation
(ODE) that also satisfies certain specified boundary conditions. The boundary conditions specify a
relationship between the values of the solution at two or more locations in the interval of integration.
In the simplest case, the boundary conditions apply at the beginning and end (or boundaries) of the
interval.

The MATLAB BVP solvers bvp4c and bvp5c are designed to handle systems of ODEs of the form

y′ = f x, y

where:

• x is the independent variable
• y is the dependent variable
• y′ represents the derivative of y with respect to x, also written as dy/dx

Boundary Conditions
In the simplest case of a two-point BVP, the solution to the ODE is sought on an interval [a, b], and
must satisfy the boundary conditions

g y a , y b = 0 .

To specify the boundary conditions for a given BVP, you must:

• Write a function of the form res = bcfun(ya,yb), or use the form res = bcfun(ya,yb,p) if
there are unknown parameters involved. You supply this function to the solver as the second input
argument. The function returns res, which is the residual value of the solution at the boundary
point. For example, if y(a) = 1 and y(b) = 0, then the boundary condition function is

function res = bcfun(ya,yb)
res = [ya(1)-1
       yb(1)];
end

• In the initial guess for the solution, the first and last points in the mesh specify the points at which
the boundary conditions are enforced. For the above boundary conditions, you can specify
bvpinit(linspace(a,b,5),yinit) to enforce the boundary conditions at a and b.

The BVP solvers in MATLAB also can accommodate other types of problems that have:

• Unknown parameters p
• Singularities in the solutions
• Multipoint conditions (internal boundaries that separate the integration interval into several

regions)

In the case of multipoint boundary conditions, the boundary conditions apply at more than two points
in the interval of integration. For example, the solution might be required to be zero at the beginning,
middle, and end of the interval. See bvpinit for details on how to specify multiple boundary
conditions.
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Initial Guess of Solution
Unlike initial value problems, a boundary value problem can have:

• No solution
• A finite number of solutions
• Infinitely many solutions

An important part of the process of solving a BVP is providing a guess for the required solution. The
quality of this guess can be critical for the solver performance and even for a successful computation.

Use the bvpinit function to create a structure for the initial guess of the solution. The solvers
bvp4c and bvp5c accept this structure as the third input argument.

Creating a good initial guess for the solution is more an art than a science. However, some general
guidelines include:

• Have the initial guess satisfy the boundary conditions, since the solution is required to satisfy
them as well. If the problem contains unknown parameters, then the initial guess for the
parameters also should satisfy the boundary conditions.

• Try to incorporate as much information about the physical problem or expected solution into the
initial guess as possible. For example, if the solution is supposed to oscillate or have a certain
number of sign changes, then the initial guess should as well.

• Consider the placement of the mesh points (the x-coordinates of the initial guess of the solution).
The BVP solvers adapt these points during the solution process, so you do not need to specify too
many mesh points. Best practice is to specify a few mesh points placed near where the solution
changes rapidly.

• If there is a known, simpler solution on a smaller interval, then use it as an initial guess on a
larger interval. Often you can solve a problem as a series of relatively simpler problems, a practice
called continuation. With continuation, a series of simple problems are connected by using the
solution of one problem as the initial guess to solve the next problem.

Finding Unknown Parameters
Often BVPs involve unknown parameters p that have to be determined as part of solving the problem.
The ODE and boundary conditions become

y′ = f x, y, p
g y a , y b , p = 0

In this case, the boundary conditions must suffice to determine the values of the parameters p.

You must provide the solver with an initial guess for any unknown parameters. When you call
bvpinit to create the structure solinit, specify the initial guess as a vector in the third input
argument parameters.

solinit = bvpinit(x,v,parameters)

Additionally, the functions odefun and bcfun that encode the ODE equations and boundary
conditions must each have a third argument.

dydx = odefun(x,y,parameters)
res = bcfun(ya,yb,parameters)
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While solving the differential equations, the solver adjusts the value of the unknown parameters to
satisfy the boundary conditions. The solver returns the final values of these unknown parameters in
sol.parameters.

Singular BVPs
bvp4c and bvp5c can solve a class of singular BVPs of the form

y′ = 1
xSy + f x, y ,

0 = g y 0 , y b .

The solvers can also accommodate unknown parameters for problems of the form

y′ = 1
xSy + f x, y, p ,

0 = g y 0 , y b , p .

Singular problems must be posed on an interval [0,b] with b > 0. Use bvpset to pass the constant
matrix S to the solver as the value of the 'SingularTerm' option. Boundary conditions at x = 0
must be consistent with the necessary condition for a smooth solution, Sy(0) = 0. The initial guess of
the solution also should satisfy this condition.

When you solve a singular BVP, the solver requires that your function odefun(x,y) return only the
value of the f(x, y) term in the equation. The term involving S is handled by the solver separately
using the 'SingularTerm' option.

BVP Solver Selection
MATLAB includes the solvers bvp4c and bvp5c to solve BVPs. In most cases you can use the solvers
interchangeably. The main difference between the solvers is that bvp4c implements a fourth-order
formula, while bvp5c implements a fifth-order formula.

The bvp5c function is used exactly like bvp4c, with the exception of the meaning of error tolerances
between the two solvers. If S(x) approximates the solution y(x), bvp4c controls the residual |S′(x) –
 f(x,S(x))|. This approach indirectly controls the true error |y(x) – S(x)|. Use bvp5c to control the true
error directly.
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Solver Description
bvp4c bvp4c is a finite difference code that implements

the 3-stage Lobatto IIIa formula. This is a
collocation formula, and the collocation
polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in the interval
of integration. Mesh selection and error control
are based on the residual of the continuous
solution.

The collocation technique uses a mesh of points
to divide the interval of integration into
subintervals. The solver determines a numerical
solution by solving a global system of algebraic
equations resulting from the boundary conditions
and the collocation conditions imposed on all the
subintervals. The solver then estimates the error
of the numerical solution on each subinterval. If
the solution does not satisfy the tolerance
criteria, then the solver adapts the mesh and
repeats the process. You must provide the points
of the initial mesh, as well as an initial
approximation of the solution at the mesh points.

bvp5c bvp5c is a finite difference code that implements
the four-stage Lobatto IIIa formula. This is a
collocation formula and the collocation
polynomial provides a C1-continuous solution that
is fifth-order accurate uniformly in [a,b]. The
formula is implemented as an implicit Runge-
Kutta formula. bvp5c solves the algebraic
equations directly, whereas bvp4c uses analytical
condensation. bvp4c handles unknown
parameters directly, while bvp5c augments the
system with trivial differential equations for
unknown parameters.

Evaluating the Solution
The collocation methods implemented in bvp4c and bvp5c produce C1-continuous solutions over the
interval of integration [a,b]. You can evaluate the approximate solution, S(x), at any point in [a,b]
using the helper function deval and the structure sol returned by the solver. For example, to
evaluate the solution sol at the mesh of points xint, use the command

Sxint = deval(sol,xint)

The deval function is vectorized. For a vector xint, the ith column of Sxint approximates the
solution y(xint(i)).
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BVP Examples and Files
Several available example files serve as excellent starting points for most common BVP problems. To
easily explore and run examples, simply use the Differential Equations Examples app. To run this
app, type

odeexamples

To open an individual example file for editing, type

edit exampleFileName.m

To run an example, type

exampleFileName

This table contains a list of the available BVP example files, as well as the solvers and the options
they use.

Example
File

Solver Used Options
Specified

Description Example Link

emdenbv
p

bvp4c or bvp5c • 'SingularTer
m'

Emden's equation, a
singular BVP

“Solve BVP with
Singular Term” on
page 12-25

fsbvp bvp4c or bvp5c — Falkner-Skan BVP on an
infinite interval

“Verify BVP
Consistency Using
Continuation” on
page 12-20

mat4bvp bvp4c or bvp5c — Fourth eigenfunction of
Mathieu's equation

“Solve BVP with
Unknown
Parameter” on
page 12-11

rcbvp bvp4c and bvp5c • 'FJacobian'
• 'AbsTol'
• 'RelTol'
• 'Stats'

Example comparing the
errors controlled by bvp4c
and bvp5c

“Compare bvp4c
and bvp5c Solvers”
(bvp4c)

“Compare bvp4c
and bvp5c Solvers”
(bvp5c)

shockbv
p

bvp4c or bvp5c • 'FJacobian'
• 'BCJacobian'
• 'Vectorized'

Solution with a shock layer
near x = 0

“Solve BVP Using
Continuation” on
page 12-15

twobvp bvp4c — BVP with exactly two
solutions

“Solve BVP with
Two Solutions” on
page 12-8

threebv
p

bvp4c or bvp5c — Three-point boundary value
problem

“Solve BVP with
Multiple Boundary
Conditions” on
page 12-29
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See Also
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Solve BVP with Two Solutions
This example uses bvp4c with two different initial guesses to find both solutions to a BVP problem.

Consider the differential equation

y′′ + ey = 0.

This equation is subject to the boundary conditions

y 0 = y 1 = 0.

To solve this equation in MATLAB, you need to code the equation and boundary conditions, then
generate a suitable initial guess for the solution before calling the boundary value problem solver
bvp4c. You either can include the required functions as local functions at the end of a file (as done
here), or save them as separate, named files in a directory on the MATLAB path.

Code Equation

Create a function to code the equation. This function should have the signature dydx =
bvpfun(x,y) or dydx = bvpfun(x,y,parameters), where:

• x is the independent variable.
• y is the solution (dependent variable).
• parameters is a vector of unknown parameter values (optional).

These inputs are automatically passed to the function by the solver, but the variable names determine
how you code the equations. In this case, you can rewrite the second-order equation as a system of
first-order equations

y1′ = y2,

y2′ = − ey1.

The function encoding these equations is

function dydx = bvpfun(x,y)
dydx = [y(2)
        -exp(y(1))];
end

Code Boundary Conditions

For two-point boundary value conditions like the ones in this problem, the boundary conditions
function should have the signature res = bcfun(ya,yb) or res = bcfun(ya,yb,parameters),
depending on whether unknown parameters are involved. ya and yb are column vectors that the
solver automatically passes to the function, and bcfun returns the residual in the boundary
conditions.

For the boundary conditions y 0 = y 1 = 0, the bcfun function specifies that the residual value is
zero at both boundaries. These residual values are enforced at the first and last points of the mesh
that you specify to bvpinit in your initial guess. The initial mesh in this problem should have x(1)
= 0 and x(end) = 1.
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function res = bcfun(ya,yb)
res = [ya(1)
       yb(1)];
end

Form Initial Guess

Call bvpinit to generate an initial guess of the solution. The mesh for x does not need to have a lot
of points, but the first point must be 0. Then the last point must be 1 so that the boundary conditions
are properly specified. Use an initial guess for y where the first component is slightly positive and the
second component is zero.

xmesh = linspace(0,1,5);
solinit = bvpinit(xmesh, [0.1 0]);

Solve Equation

Solve the BVP using the bvp4c solver.

sol1 = bvp4c(@bvpfun, @bcfun, solinit);

Use Different Initial Guess

Solve the BVP a second time using a different initial guess for the solution.

solinit = bvpinit(xmesh, [3 0]);
sol2 = bvp4c(@bvpfun, @bcfun, solinit);

Compare Solutions

Plot the solutions that bvp4c calculates for the different initial conditions. Both solutions satisfy the
stated boundary conditions, but have different behaviors inbetween. Since the solution is not always
unique, the different behaviors show the importance of giving a good initial guess for the solution.

plot(sol1.x,sol1.y(1,:),'-o',sol2.x,sol2.y(1,:),'-o')
title('BVP with Different Solutions That Depend on the Initial Guess')
xlabel('x')
ylabel('y')
legend('Solution 1','Solution 2')
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Local Functions

Listed here are the local helper functions that the BVP solver bvp4c calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydx = bvpfun(x,y) % equation being solved
dydx = [y(2)
        -exp(y(1))];
end
%-------------------------------------------
function res = bcfun(ya,yb) % boundary conditions 
res = [ya(1)
       yb(1)];
end
%-------------------------------------------

See Also
bvp4c | bvp5c | bvpinit

More About
• “Solving Boundary Value Problems” on page 12-2
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Solve BVP with Unknown Parameter
This example shows how to use bvp4c to solve a boundary value problem with an unknown
parameter.

Mathieu's equation is defined on the interval 0, π  by

y′′ + λ− 2q cos 2x y = 0.

When the parameter q = 5, the boundary conditions are

y′ 0 = 0,

y′ π = 0.

However, this only determines y x  up to a constant multiple, so a third condition is required to
specify a particular solution,

y 0 = 1.

To solve this system of equations in MATLAB, you need to code the equations, boundary conditions,
and initial guess before calling the boundary value problem solver bvp4c. You can either include the
required functions as local functions at the end of a file (as done here), or save them as separate,
named files in a directory on the MATLAB path.

Code Equation

Create a function to code the equations. This function should have the signature dydx =
mat4ode(x,y,lambda), where:

• x is the independent variable.
• y is the dependent variable.
• lambda is an unknown parameter representing an eigenvalue.

You can write Mathieu's equation as a first-order system using the substitutions y1 = y and y2 = y′,

y1′ = y2,

y2′ = − λ− 2q cos 2x y1.

The corresponding function is then

function dydx = mat4ode(x,y,lambda) % equation being solved
dydx = [y(2)
      -(lambda - 2*q*cos(2*x))*y(1)];
end

Note: All functions are included as local functions at the end of the example.

Code Boundary Conditions

Now, write a function that returns the residual value of the boundary conditions at the boundary
points. This function should have the signature res = mat4bc(ya,yb,lambda), where:
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• ya is the value of the boundary condition at the beginning of the interval a, b .
• yb is the value of the boundary condition at the end of the interval a, b .
• lambda is an unknown parameter representing an eigenvalue.

This problem has three boundary conditions in the interval 0, π . To calculate the residual values, you
need to put the boundary conditions into the form g x, y = 0. In this form the boundary conditions
are

y′ 0 = 0,

y′ π = 0,

y 0 − 1 = 0.

The corresponding function is then

function res = mat4bc(ya,yb,lambda) % boundary conditions
res = [ya(2)
       yb(2)
       ya(1)-1];
end

Create Initial Guess

Lastly, create an initial guess of the solution. You must provide an initial guess for both solution
components y1 = y x  and y2 = y′ x , as well as the unknown parameter λ.

For this problem, a cosine function makes for a good initial guess since it satisfies the three boundary
conditions. Code the initial guess for y using a function that returns the guess for y1 and y2.

function yinit = mat4init(x) % initial guess function
yinit = [cos(4*x)
        -4*sin(4*x)];
end

Call bvpinit using a mesh of 10 points in the interval 0, π , the initial guess function, and a guess of
15 for the value of λ.

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);

Solve Equation

Call bvp4c with the ODE function, boundary condition function, and initial guess.

sol = bvp4c(@mat4ode, @mat4bc, solinit);

Value of Parameter

Print the value of the unknown parameter λ found by bvp4c. This value is the fourth eigenvalue
(q = 5) of Mathieu's equation.

fprintf('Fourth eigenvalue is approximately %7.3f.\n',...
            sol.parameters)

Fourth eigenvalue is approximately  17.097.
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Plot Solution

Use deval to evaluate the solution computed by bvp4c at 100 points in the interval 0, π .

xint = linspace(0,pi);
Sxint = deval(sol,xint);

Plot both solution components. The plot shows the eigenfunction (and its derivative) associated with
the fourth eigenvalue λ4 = 17 . 097.

plot(xint,Sxint)
axis([0 pi -4 4])
title('Eigenfunction of Mathieu''s Equation.') 
xlabel('x')
ylabel('y')
legend('y','y''')

Local Functions

Listed here are the local helper functions that the BVP solver bvp4c calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydx = mat4ode(x,y,lambda) % equation being solved
q = 5;
dydx = [y(2)
      -(lambda - 2*q*cos(2*x))*y(1)];
end
%-------------------------------------------
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function res = mat4bc(ya,yb,lambda) % boundary conditions
res = [ya(2)
       yb(2)
       ya(1)-1];
end
%-------------------------------------------
function yinit = mat4init(x) % initial guess function
yinit = [cos(4*x)
        -4*sin(4*x)];
end
%-------------------------------------------

See Also
bvp4c | bvp5c | bvpinit

More About
• “Solving Boundary Value Problems” on page 12-2
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Solve BVP Using Continuation
This example shows how to solve a numerically difficult boundary value problem using continuation,
which effectively breaks the problem up into a sequence of simpler problems.

For 0 < e ≪ 1, consider the differential equation

ey′′ + xy′ = − eπ2cos πx − πxsin πx .

The problem is posed on the interval −1, 1  and is subject to the boundary conditions

y −1 = − 2,

y 1 = 0.

When e = 10−4, the solution to the equation undergoes a rapid transition near x = 0, so it is difficult
to solve numerically. Instead, this example uses continuation to iterate through several values of e
until e = 10−4. The intermediate solutions are each used as the initial guess for the next problem.

To solve this system of equations in MATLAB, you need to code the equations, boundary conditions,
and initial guess before calling the boundary value problem solver bvp4c. You either can include the
required functions as local functions at the end of a file (as done here), or you can save them as
separate, named files in a directory on the MATLAB path.

Code Equation

Using the substitutions y1 = y and y2 = y′, you can rewrite the equation as the system of first-order
equations

y1′ = y2,

y2′ = − x
e y′− π2cos πx − πx

e sin πx .

Write a function to code the equations with the signature dydx = shockode(x,y), where:

• x is the independent variable.
• y is the dependent variable.
• dydx(1) gives the equation for y1′, and dydx(2) gives the equation for y2′.

Make the function vectorized, so that shockode([x1 x2 ...],[y1 y2 ...]) returns
[shockode(x1,y1) shockode(x2,y2) ...]. This approach improves solver performance.

The corresponding function is

function dydx = shockode(x,y)
pix = pi*x;
dydx = [y(2,:)
       -x/e.*y(2,:) - pi^2*cos(pix) - pix/e.*sin(pix)];
end

Note: All functions are included as local functions at the end of the example.
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Code Boundary Conditions

The BVP solver requires the boundary conditions to be in the form g y a , y b = 0. In this form the
boundary conditions are:

y −1 + 2 = 0,

y 1 = 0.

Write a function to code the boundary conditions with the signature res = shockbc(ya,yb),
where:

• ya is the value of the boundary condition at the beginning of the interval a, b .
• yb is the value of the boundary condition at the end of the interval a, b .

The corresponding function is

function res = shockbc(ya,yb) % boundary conditions
res = [ya(1)+2
       yb(1)];
end

Code Jacobians

The analytical Jacobians for the ODE function and boundary conditions can be calculated easily in
this problem. Providing the Jacobians makes the solver more efficient, since the solver no longer
needs to approximate them with finite differences.

For the ODE function, the Jacobian matrix is

JODE = ∂ f
∂y =

∂ f1
∂y1

∂ f1
∂y2

∂ f2
∂y1

∂ f2
∂y2

=
0 1

0 − x
e

.

The corresponding function is

function jac = shockjac(x,y,e)
jac = [0   1
       0  -x/e];
end

Similarly, for the boundary conditions, the Jacobian matrices are

Jy a =
1 0
0 0

 , Jy b =
0 0
1 0

.

The corresponding function is

function [dBCdya,dBCdyb] = shockbcjac(ya,yb)
dBCdya = [1 0; 0 0];
dBCdyb = [0 0; 1 0];
end

Form Initial Guess

Use a constant guess for the solution on a mesh of five points in −1, 1 .
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sol = bvpinit([-1 -0.5 0 0.5 1],[1 0]);

Solve Equation

If you try to solve the equation directly using e = 10−4, then the solver is not able to overcome the
poor conditioning of the problem near the x = 0 transition point. Instead, to obtain the solution for
e = 10−4, this example uses continuation by solving a sequence of problems for 10−2, 10−3, and
10−4. The output from the solver in each iteration acts as the guess for the solution in the next
iteration (this is why the variable for the initial guess from bvpinit is sol, and the output from the
solver is also named sol).

Since the value of the Jacobian depends on the value of e, set the options in the loop specifying the
shockjac and shockbcjac functions for the Jacobians. Also, turn vectorization on since shockode
is coded to handle vectors of values.

e = 0.1;
for i = 2:4
   e = e/10;
   options = bvpset('FJacobian',@(x,y) shockjac(x,y,e),'BCJacobian',@shockbcjac,'Vectorized','on');
   sol = bvp4c(@(x,y) shockode(x,y,e),@shockbc, sol, options);
end

Plot Solution

Plot the results from bvp4c for the mesh x and solution y x . With continuation, the solver is able to
handle the discontinuity at x = 0.

plot(sol.x,sol.y(1,:),'-o');
axis([-1 1 -2.2 2.2]);
title(['There Is a Shock at x = 0 When e =' sprintf('%.e',e) '.']);
xlabel('x');
ylabel('solution y');
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Local Functions

Listed here are the local functions that the BVP solver bvp4c calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydx = shockode(x,y,e) % equation to solve
pix = pi*x;
dydx = [y(2,:)
       -x/e.*y(2,:) - pi^2*cos(pix) - pix/e.*sin(pix)];
end
%-------------------------------------------
function res = shockbc(ya,yb) % boundary conditions
res = [ya(1)+2
       yb(1)];
end
%-------------------------------------------
function jac = shockjac(x,y,e) % jacobian of shockode
jac = [0   1
       0  -x/e];
end
%-------------------------------------------
function [dBCdya,dBCdyb] = shockbcjac(ya,yb) % jacobian of shockbc
dBCdya = [1 0; 0 0];
dBCdyb = [0 0; 1 0];
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end
%-------------------------------------------

See Also
bvp4c | bvpinit | bvpset

More About
• “Solving Boundary Value Problems” on page 12-2
• “Verify BVP Consistency Using Continuation” on page 12-20
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Verify BVP Consistency Using Continuation
This example shows how to use continuation to gradually extend a BVP solution to larger intervals.

Falkner-Skan boundary value problems [1] arise from similarity solutions of a viscous,
incompressible, laminar flow over a flat plate. An example equation is

f ′′′ + f f ′′ + β 1− f ′ 2 = 0.

The problem is posed on the infinite interval 0, ∞  with β = 0 . 5, subject to the boundary conditions

f 0 = 0,

f ′ 0 = 0,

f ′ ∞ = 1.

The BVP cannot be solved on the infinite interval, and it is impractical to solve the BVP in a very large
finite interval. Instead, this example solves a sequence of problems posed on the smaller interval
0, a  to verify that the solution has consistent behavior as a ∞. This practice of breaking the

problem up into simpler problems, with the solution of each problem feeding back in as the initial
guess for the next problem, is called continuation.

To solve this system of equations in MATLAB, you need to code the equations, boundary conditions,
and options before calling the boundary value problem solver bvp4c. You either can include the
required functions as local functions at the end of a file (as done here), or save them as separate,
named files in a directory on the MATLAB path.

Code Equation

Create a function to code the equations. This function should have the signature dfdx =
fsode(x,f), where:

• x is the independent variable.
• f is the dependent variable.

You can rewrite the third-order equation as a system of first-order equations using the substitutions
f1 = f , f2 = f ′, and f3 = f ′′. The equations become

f1′ = f2,

f2′ = f3,

f3′ = − f1f3− β 1− f2
2 .

The corresponding function is

function dfdeta = fsode(x,f)
b = 0.5;
dfdeta = [ f(2)
           f(3)
          -f(1)*f(3) - b*(1 - f(2)^2) ];
end
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Note: All functions are included as local functions at the end of the example.

Code Boundary Conditions

Now, write a function that returns the residual value of the boundary conditions at the boundary
points. This function should have the signature res = fsbc(f0,finf), where:

• f0 is the value of the boundary condition at the beginning of the interval.
• finf is the value of the boundary condition at the end of the interval.

To calculate the residual values, you need to put the boundary conditions in the form g x, y = 0. In
this form, the boundary conditions are

f 0 = 0,

f ′ 0 = 0,

f ′ ∞ − 1 = 0.

The corresponding function is

function res = fsbc(f0,finf)
res = [f0(1)
       f0(2)
       finf(2) - 1];
end

Create Initial Guess

Lastly, you must provide an initial guess for the solution. A crude mesh of five points and a constant
guess that satisfies the boundary conditions are good enough to get convergence on the interval
0, 3 . The variable infinity denotes the right-hand limit of the interval of integration. As the value

of infinity increases on subsequent iterations from 3 to its maximum value of 6, the solution from
each previous iteration acts as the initial guess for the next iteration.

infinity = 3;
maxinfinity = 6;
solinit = bvpinit(linspace(0,infinity,5),[0 0 1]);

Solve Equation and Plot Solutions

Solve the problem in the initial interval 0, 3 . Plot the solution, and compare the value of f ′′ 0  to the
analytic value [1].

sol = bvp4c(@fsode,@fsbc,solinit);
x = sol.x;
f = sol.y;
plot(x,f(2,:),x(end),f(2,end),'o');
axis([0 maxinfinity 0 1.4]);
title('Falkner-Skan Equation, Positive Wall Shear, \beta = 0.5.')
xlabel('x')
ylabel('df/dx')
hold on
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fprintf('Cebeci & Keller report that f''''(0) = 0.92768.\n')

Cebeci & Keller report that f''(0) = 0.92768.

fprintf('Value computed using infinity = %g is %7.5f.\n', ...
         infinity,f(3,1))

Value computed using infinity = 3 is 0.92915.

Now, solve the problem on progressively larger intervals by increasing the value of infinity for
each iteration. The bvpinit function extrapolates each solution to the new interval to act as the
initial guess for the next value of infinity. Each iteration prints the calculated value of f ′′ 0  and
superimposes the plot of the solution over the previous solutions. When infinity = 6, the
consistent behavior of the solution becomes evident and the value of f ′′ 0  is very close to the
predicted value.

for Bnew = infinity+1:maxinfinity
  solinit = bvpinit(sol,[0 Bnew]); % Extend solution to new interval
  sol = bvp4c(@fsode,@fsbc,solinit);
  x = sol.x;
  f = sol.y;
  
  fprintf('Value computed using infinity = %g is %7.5f.\n', ...
           Bnew,f(3,1))
  plot(x,f(2,:),x(end),f(2,end),'o');
  drawnow
end
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Value computed using infinity = 4 is 0.92774.

Value computed using infinity = 5 is 0.92770.

Value computed using infinity = 6 is 0.92770.

hold off

Local Functions

Listed here are the local helper functions that the BVP solver bvp4c calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dfdeta = fsode(x,f) % equation being solved
dfdeta = [ f(2)
           f(3)
          -f(1)*f(3) - 0.5*(1 - f(2)^2) ];
end 
%-------------------------------------------
function res = fsbc(f0,finf) % boundary conditions
res = [f0(1)
       f0(2)
       finf(2) - 1];
end
%-------------------------------------------
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See Also
bvp4c | bvp5c | bvpinit

More About
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Solve BVP with Singular Term
This example shows how to solve Emden's equation, which is a boundary value problem with a
singular term that arises in modeling a spherical body of gas.

After reducing the PDE of the model using symmetry, the equation becomes a second-order ODE
defined on the interval 0, 1 ,

y′′ + 2
x y′ + y5 = 0.

At x = 0, the 2/x  term is singular, but symmetry implies the boundary condition y′ 0 = 0. With this
boundary condition, the term 2/x y′ is well defined as x 0. For the boundary condition y 1 = 3/2,
the BVP has an analytical solution that you can compare to a numeric solution calculated in
MATLAB®,

y x = 1 + x2

3

−1
.

The BVP solver bvp4c can solve singular BVPs that have the form

y′ = S y
x + f (x, y).

The matrix S must be constant and the boundary conditions at x = 0 must be consistent with the
necessary condition S ⋅ y 0 = 0. Use the 'SingularTerm' option of bvpset to pass the S matrix to
the solver.

You can rewrite Emden's equation as a system of first-order equations using y1 = y and y2 = y′ as

y1′ = y2,

y2′ = − 2
x y2− y1

5.

The boundary conditions become

y2 0 = 0,

y1 1 = 3/2.

In the required matrix form, the system is

y1′
y2′

= 1
x

0 0
0 −2

y1
y2

+
y2

−y1
5 .

In matrix form it is clear that S =
0 0
0 −2

 and f x, y =
y2

−y1
5 .

To solve this system of equations in MATLAB, you need to code the equations, boundary conditions,
and options before calling the boundary value problem solver bvp4c. You either can include the
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required functions as local functions at the end of a file (as done here), or save them as separate,
named files in a directory on the MATLAB path.

Code Equation

Create a function to code the equations for f x, y . This function should have the signature dydx =
emdenode(x,y), where:

• x is the independent variable.
• y is the dependent variable.
• dydx(1) gives the equation for y1′, and dydx(2) the equation for y2′.

These inputs are automatically passed to the function by the solver, but the variable names determine
how you code the equations. In this case:

function dydx = emdenode(x,y)
dydx = [y(2) 
       -y(1)^5];
end

The term that contains S is passed to the solver using options, so that term is not included in the
function.

Code Boundary Conditions

Now, write a function that returns the residual value of the boundary conditions at the boundary
points. This function should have the signature res = emdenbc(ya,yb), where:

• ya is the value of the boundary condition at the beginning of the interval.
• yb is the value of the boundary condition at the end of the interval.

For this problem, one of the boundary conditions is for y1, and the other is for y2. To calculate the
residual values, you need to put the boundary conditions into the form g x, y = 0.

In this form the boundary conditions are

y2 0 = 0,

y1 1 − 3/2 = 0.

The corresponding function is then

function res = emdenbc(ya,yb)
res = [ya(2)
       yb(1) - sqrt(3)/2];
end

Create Initial Guess

Lastly, create an initial guess of the solution. For this problem, use a constant initial guess that
satisfies the boundary conditions, and a simple mesh of five points between 0 and 1. Using many
mesh points is unnecessary since the BVP solver adapts these points during the solution process.

y1 = 3/2,
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y2 = 0.

guess = [sqrt(3)/2; 0];
xmesh = linspace(0,1,5);
solinit = bvpinit(xmesh, guess);

Solve Equation

Create a matrix for S and pass it to bvpset as the value of the 'SingularTerm' option. Finally, call
bvp4c with the ODE function, boundary condition function, initial guess, and option structure.

S = [0 0; 0 -2];
options = bvpset('SingularTerm',S);
sol = bvp4c(@emdenode, @emdenbc, solinit, options);

Plot Solution

Calculate the value of the analytical solution in 0, 1 .

x = linspace(0,1);
truy = 1 ./ sqrt(1 + (x.^2)/3);

Plot the analytical solution and the solution calculated by bvp4c for comparison.

plot(x,truy,sol.x,sol.y(1,:),'ro');
title('Emden Problem -- BVP with Singular Term.')
legend('Analytical','Computed');
xlabel('x');
ylabel('solution y');
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Local Functions

Listed here are the local helper functions that the BVP solver bvp4c calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydx = emdenode(x,y) % equation being solved 
dydx = [y(2) 
       -y(1)^5];
end
%-------------------------------------------
function res = emdenbc(ya,yb) % boundary conditions
res = [ya(2)
       yb(1) - sqrt(3)/2];
end
%-------------------------------------------

See Also
bvp4c | bvp5c | bvpinit | bvpset

More About
• “Solving Boundary Value Problems” on page 12-2
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Solve BVP with Multiple Boundary Conditions
This example shows how to solve a multipoint boundary value problem, where the solution of interest
satisfies conditions inside the interval of integration.

For x in 0, λ , consider the equations

v′ = C− 1
n ,

C′ = vC−min x, 1
η .

The known parameters of the problem are n, κ, λ > 1, and η = λ2

n ⋅ κ2 .

The term min x, 1  in the equation for C′ x  is not smooth at x = 1, so the problem cannot be solved
directly. Instead, you can break the problem into two: one set in the interval 0, 1 , and the other set
in the interval 1, λ . The connection between the two regions is that the solutions must be continuous
at x = 1. The solution must also satisfy the boundary conditions

v 0 = 0,

C λ = 1.

The equations for each region are

Region 1: 0 ≤ x ≤ 1

v′ = C− 1
n ,

C′ = vC− x
η .

Region 2: 1 ≤ x ≤ λ

v′ = C− 1
n ,

C′ = vC− 1
η .

The interface point x = 1 is included in both regions. At this point, the solver produces both left and
right solutions, which must be equal to ensure continuity of the solution.

To solve this system of equations in MATLAB, you need to code the equations, boundary conditions,
and initial guess before calling the boundary value problem solver bvp5c. You either can include the
required functions as local functions at the end of a file (as done here), or save them as separate,
named files in a directory on the MATLAB path.

Code Equations

The equations for v′ x  and C′ x  depend on the region being solved. For multipoint boundary value
problems the derivative function must accept a third input argument region, which is used to
identify the region where the derivative is being evaluated. The solver numbers the regions from left
to right, starting with 1.
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Create a function to code the equations with the signature dydx = f(x,y,region,p), where:

• x is the independent variable.
• y is the dependent variable.
• dydx(1) gives the equation for v′ x , and dydx(2) the equation for C′ x .
• region is the number of the region where the derivative is being computed (in this two-region

problem, region is 1 or 2).
• p is a vector containing the values of the constant parameters n, κ, λ, η .

Use a switch statement to return different equations depending on the region being solved. The
function is

function dydx = f(x,y,region,p) % equations being solved
n = p(1);
eta = p(4);

dydx = zeros(2,1);
dydx(1) = (y(2) - 1)/n;

switch region
    case 1    % x in [0 1]
        dydx(2) = (y(1)*y(2) - x)/eta;
    case 2    % x in [1 lambda]
        dydx(2) = (y(1)*y(2) - 1)/eta;
end
end

Note: All functions are included as local functions at the end of the example.

Code Boundary Conditions

Solving two first-order differential equations in two regions requires four boundary conditions. Two of
these conditions come from the original problem:

v 0 = 0,

C λ − 1 = 0.

The other two conditions enforce the continuity of the left and right solutions at the interface point
x = 1:

vL 1 − vR 1 = 0,

CL 1 − CR 1 = 0.

For multipoint BVPs, the arguments of the boundary conditions function YL and YR become matrices.
In particular, the kth column YL(:,k) is the solution at the left boundary of the kth region. Similarly,
YR(:,k) is the solution at the right boundary of the kth region.

In this problem, y 0  is approximated by YL(:,1), while y λ  is approximated by YR(:,end).
Continuity of the solution at x = 1 requires that YR(:,1) = YL(:,2).

The function that encodes the residual value of the four boundary conditions is

function res = bc(YL,YR)
res = [YL(1,1)               % v(0) = 0
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       YR(1,1) - YL(1,2)     % Continuity of v(x) at x=1
       YR(2,1) - YL(2,2)     % Continuity of C(x) at x=1
       YR(2,end) - 1];       % C(lambda) = 1
end

Form Initial Guess

For multipoint BVPs, the boundary conditions are automatically applied at the beginning and end of
the interval of integration. However, you must specify double entries in xmesh for the other interface
points. A simple guess that satisfies the boundary conditions is the constant guess y = [1; 1].

xc = 1;
xmesh = [0 0.25 0.5 0.75 xc xc 1.25 1.5 1.75 2];
yinit = [1; 1];
sol = bvpinit(xmesh,yinit);

Solve Equation

Define the values of the constant parameters and put them in the vector p. Provide the function to
bvp5c with the syntax @(x,y,r) f(x,y,r,p) to provide the vector of parameters.

Calculate the solution for several values of κ, using each solution as the initial guess for the next. For
each value of κ, calculate the value of the osmolarity Os = 1

v λ . For each iteration of the loop,
compare the computed value with the approximate analytical solution.

lambda = 2;
n = 5e-2;
for kappa = 2:5
   eta = lambda^2/(n*kappa^2);
   p = [n kappa lambda eta];
   sol = bvp5c(@(x,y,r) f(x,y,r,p), @bc, sol);
   K2 = lambda*sinh(kappa/lambda)/(kappa*cosh(kappa));
   approx = 1/(1 - K2);
   computed = 1/sol.y(1,end);
   fprintf('  %2i    %10.3f     %10.3f \n',kappa,computed,approx);
end

   2         1.462          1.454 
   3         1.172          1.164 
   4         1.078          1.071 
   5         1.039          1.034 

Plot Solution

Plot the solution components for v x  and C x  and a vertical line at the interface point x = 1. The
displayed solution for κ = 5 results from the final iteration of the loop.

plot(sol.x,sol.y(1,:),'--o',sol.x,sol.y(2,:),'--o')
line([1 1], [0 2], 'Color', 'k')
legend('v(x)','C(x)')
title('A Three-Point BVP Solved with bvp5c')
xlabel({'x', '\lambda = 2, \kappa = 5'})
ylabel('v(x) and C(x)')
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Local Functions

Listed here are the local helper functions that the BVP solver bvp5c calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydx = f(x,y,region,p) % equations being solved
n = p(1);
eta = p(4);

dydx = zeros(2,1);
dydx(1) = (y(2) - 1)/n;

switch region
    case 1    % x in [0 1]
        dydx(2) = (y(1)*y(2) - x)/eta;
    case 2    % x in [1 lambda]
        dydx(2) = (y(1)*y(2) - 1)/eta;
end
end
%-------------------------------------------
function res = bc(YL,YR) % boundary conditions
res = [YL(1,1)               % v(0) = 0
       YR(1,1) - YL(1,2)     % Continuity of v(x) at x=1
       YR(2,1) - YL(2,2)     % Continuity of C(x) at x=1
       YR(2,end) - 1];       % C(lambda) = 1
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end
%-------------------------------------------

See Also
bvp4c | bvp5c | bvpinit

More About
• “Solving Boundary Value Problems” on page 12-2
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Partial Differential Equations (PDEs)

• “Solving Partial Differential Equations” on page 13-2
• “Solve Single PDE” on page 13-9
• “Solve PDE with Discontinuity” on page 13-16
• “Solve PDE and Compute Partial Derivatives” on page 13-23
• “Solve System of PDEs” on page 13-32
• “Solve System of PDEs with Initial Condition Step Functions” on page 13-39
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Solving Partial Differential Equations
In a partial differential equation (PDE), the function being solved for depends on several variables,
and the differential equation can include partial derivatives taken with respect to each of the
variables. Partial differential equations are useful for modelling waves, heat flow, fluid dispersion, and
other phenomena with spatial behavior that changes over time.

What Types of PDEs Can You Solve with MATLAB?
The MATLAB PDE solver pdepe solves initial-boundary value problems for systems of PDEs in one
spatial variable x and time t. You can think of these as ODEs of one variable that also change with
respect to time.

pdepe uses an informal classification for the 1-D equations it solves:

•
Equations with a time derivative are parabolic. An example is the heat equation ∂u∂t = ∂2u

∂x2 .

•
Equations without a time derivative are elliptic. An example is the Laplace equation ∂

2u
∂x2 = 0.

pdepe requires at least one parabolic equation in the system. In other words, at least one equation in
the system must include a time derivative.

pdepe also solves certain 2-D and 3-D problems that reduce to 1-D problems due to angular
symmetry (see the argument description for the symmetry constant m for more information).

Partial Differential Equation Toolbox extends this functionality to generalized problems in 2-D and 3-D
with Dirichlet and Neumann boundary conditions.

Solving 1-D PDEs
A 1-D PDE includes a function u(x,t) that depends on time t and one spatial variable x. The MATLAB
PDE solver pdepe solves systems of 1-D parabolic and elliptic PDEs of the form

c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x .

The equation has the properties:

• The PDEs hold for t0 ≤ t ≤ tf and a ≤ x ≤ b.
• The spatial interval [a, b] must be finite.
• m can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry, respectively. If m >

0, then a ≥ 0 must also hold.
• The coefficient f x, t, u, ∂u∂x  is a flux term and s x, t, u, ∂u∂x  is a source term.

• The flux term must depend on the partial derivative ∂u/∂x.

The coupling of the partial derivatives with respect to time is restricted to multiplication by a
diagonal matrix c x, t, u, ∂u∂x . The diagonal elements of this matrix are either zero or positive. An
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element that is zero corresponds to an elliptic equation, and any other element corresponds to a
parabolic equation. There must be at least one parabolic equation. An element of c that corresponds
to a parabolic equation can vanish at isolated values of x if they are mesh points (points where the
solution is evaluated). Discontinuities in c and s due to material interfaces are permitted provided
that a mesh point is placed at each interface.

Solution Process

To solve PDEs with pdepe, you must define the equation coefficients for c, f, and s, the initial
conditions, the behavior of the solution at the boundaries, and a mesh of points to evaluate the
solution on. The function call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) uses this
information to calculate a solution on the specified mesh:

• m is the symmetry constant.
• pdefun defines the equations being solved.
• icfun defines the initial conditions.
• bcfun defines the boundary conditions.
• xmesh is a vector of spatial values for x.
• tspan is a vector of time values for t.

Together, the xmesh and tspan vectors form a 2-D grid that pdepe evaluates the solution on.

Equations

You must express the PDEs in the standard form expected by pdepe. Written in this form, you can
read off the values of the coefficients c, f, and s.

In MATLAB you can code the equations with a function of the form

function [c,f,s] = pdefun(x,t,u,dudx)
c = 1;
f = dudx;
s = 0;
end

In this case pdefun defines the equation ∂u∂t = ∂2u
∂x2 . If there are multiple equations, then c, f, and s

are vectors with each element corresponding to one equation.

Initial Conditions

At the initial time t = t0, for all x, the solution components satisfy initial conditions of the form

u x, t0 = u0 x .

In MATLAB you can code the initial conditions with a function of the form

function u0 = icfun(x)
u0 = 1;
end

In this case u0 = 1 defines an initial condition of u0(x,t0) = 1. If there are multiple equations, then u0
is a vector with each element defining the initial condition of one equation.
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Boundary Conditions

At the boundary x = a or x = b, for all t, the solution components satisfy boundary conditions of the
form

p x, t, u + q x, t f x, t, u, ∂u∂x = 0.

q(x,t) is a diagonal matrix with elements that are either zero or never zero. Note that the boundary
conditions are expressed in terms of the flux f, rather than the partial derivative of u with respect to
x. Also, of the two coefficients p(x,t,u) and q(x,t), only p can depend on u.

In MATLAB you can code the boundary conditions with a function of the form

function [pL,qL,pR,qR] = bcfun(xL,uL,xR,uR,t)
pL = uL;
qL = 0;
pR = uR - 1;
qR = 0;
end

pL and qL are the coefficients for the left boundary, while pR and qR are the coefficients for the right
boundary. In this case bcfun defines the boundary conditions

uL xL, t = 0
uR xR, t = 1

If there are multiple equations, then the outputs pL, qL, pR, and qR are vectors with each element
defining the boundary condition of one equation.

Integration Options

The default integration properties in the MATLAB PDE solver are selected to handle common
problems. In some cases, you can improve solver performance by overriding these default values. To
do this, use odeset to create an options structure. Then, pass the structure to pdepe as the last
input argument:

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

Of the options for the underlying ODE solver ode15s, only those shown in the following table are
available for pdepe.

Category Option Name
Error control RelTol, AbsTol, NormControl
Step-size InitialStep, MaxStep
Event logging Events

Evaluating the Solution

After you solve an equation with pdepe, MATLAB returns the solution as a 3-D array sol, where
sol(i,j,k) contains the kth component of the solution evaluated at t(i) and x(j). In general, you
can extract the kth solution component with the command u = sol(:,:,k).

The time mesh you specify is used purely for output purposes, and does not affect the internal time
steps taken by the solver. However, the spatial mesh you specify can affect the quality and speed of
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the solution. After solving an equation, you can use pdeval to evaluate the solution structure
returned by pdepe with a different spatial mesh.

Example: The Heat Equation
An example of a parabolic PDE is the heat equation in one dimension:

∂u
∂t = ∂2u

∂x2 .

This equation describes the dissipation of heat for 0 ≤ x ≤ L and t ≥ 0. The goal is to solve for the
temperature u x, t . The temperature is initially a nonzero constant, so the initial condition is

u x, 0 = T0 .

Also, the temperature is zero at the left boundary, and nonzero at the right boundary, so the boundary
conditions are

u 0, t = 0,
u L, t = 1 .

To solve this equation in MATLAB, you need to code the equation, initial conditions, and boundary
conditions, then select a suitable solution mesh before calling the solver pdepe. You either can
include the required functions as local functions at the end of a file (as in this example), or save them
as separate, named files in a directory on the MATLAB path.

Code Equation

Before you can code the equation, you need to make sure that it is in the form that the pdepe solver
expects:

c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x .

In this form, the heat equation is

1 ⋅ ∂u∂t = x0 ∂
∂x x0∂u

∂x + 0 .

So the values of the coefficients are as follows:

• m = 0
• c = 1
• f = ∂u

∂x
• s = 0

The value of m is passed as an argument to pdepe, while the other coefficients are encoded in a
function for the equation, which is

function [c,f,s] = heatpde(x,t,u,dudx)
c = 1;
f = dudx;

 Solving Partial Differential Equations

13-5



s = 0;
end

(Note: All functions are included as local functions at the end of the example.)

Code Initial Condition

The initial condition function for the heat equation assigns a constant value for u0. This function must
accept an input for x, even if it is unused.

function u0 = heatic(x)
u0 = 0.5;
end

Code Boundary Conditions

The standard form for the boundary conditions expected by the pdepe solver is

p x, t, u + q x, t f x, t, u, ∂u∂x = 0 .

Written in this form, the boundary conditions for this problem are

u 0, t + 0 ⋅ f = 0,

u L, t − 1 + 0 ⋅ f = 0 .

So the values for p and q are

• pL = uL, qL = 0 .
• pR = uR− 1, qR = 0.

The corresponding function is then

function [pl,ql,pr,qr] = heatbc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = ur - 1;
qr = 0;
end

Select Solution Mesh

Use a spatial mesh of 20 points and a time mesh of 30 points. Since the solution rapidly reaches a
steady state, the time points near t = 0 are more closely spaced together to capture this behavior in
the output.

L = 1;
x = linspace(0,L,20);
t = [linspace(0,0.05,20), linspace(0.5,5,10)];

Solve Equation

Finally, solve the equation using the symmetry m, the PDE equation, the initial condition, the
boundary conditions, and the meshes for x and t.

m = 0;
sol = pdepe(m,@heatpde,@heatic,@heatbc,x,t);
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Plot Solution

Use imagesc to visualize the solution matrix.

colormap hot
imagesc(x,t,sol)
colorbar
xlabel('Distance x','interpreter','latex')
ylabel('Time t','interpreter','latex')
title('Heat Equation for $0 \le x \le 1$ and $0 \le t \le 5$','interpreter','latex')

Local Functions

function [c,f,s] = heatpde(x,t,u,dudx)
c = 1;
f = dudx;
s = 0;
end
function u0 = heatic(x)
u0 = 0.5;
end
function [pl,ql,pr,qr] = heatbc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = ur - 1;
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qr = 0;
end

PDE Examples and Files
Several available example files serve as excellent starting points for most common 1-D PDE problems.
To explore and run examples, use the Differential Equations Examples app. To run this app, type

odeexamples

To open an individual file for editing, type

edit exampleFileName.m

To run an example, type

exampleFileName

This table contains a list of the available PDE example files.

Example File Description Example Link
pdex1 Simple PDE that illustrates the formulation,

computation, and plotting of the solution.
“Solve Single PDE” on page 13-
9

pdex2 Problem that involves discontinuities. “Solve PDE with Discontinuity”
on page 13-16

pdex3 Problem that requires computing values of the
partial derivative.

“Solve PDE and Compute Partial
Derivatives” on page 13-23

pdex4 System of two PDEs whose solution has
boundary layers at both ends of the interval
and changes rapidly for small t.

“Solve System of PDEs” on page
13-32

pdex5 System of PDEs with step functions as initial
conditions.

“Solve System of PDEs with
Initial Condition Step
Functions” on page 13-39

References
[1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization of Parabolic Equations in

One Space Variable," SIAM Journal on Scientific and Statistical Computing, Vol. 11, 1990, pp.
1–32.

See Also
bvp4c | ode45 | odeset | pdepe | pdeval

More About
• “Solve Single PDE” on page 13-9
• “Solve System of PDEs” on page 13-32
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Solve Single PDE
This example shows how to formulate, compute, and plot the solution to a single PDE.

Consider the partial differential equation

π2∂ u
∂ t = ∂2u

∂x2 .

The equation is defined on the interval 0 ≤ x ≤ 1 for times t ≥ 0. At t = 0, the solution satisfies the
initial condition

u x, 0 = sin πx .

Also, at x = 0 and x = 1, the solution satisfies the boundary conditions

u 0, t = 0,

πe−t + ∂u
∂x 1, t = 0 .

To solve this equation in MATLAB, you need to code the equation, the initial conditions, and the
boundary conditions, then select a suitable solution mesh before calling the solver pdepe. You either
can include the required functions as local functions at the end of a file (as done here), or save them
as separate, named files in a directory on the MATLAB path.

Code Equation

Before you can code the equation, you need to rewrite it in a form that the pdepe solver expects. The
standard form that pdepe expects is

c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x .

Written in this form, the PDE becomes

π2∂u
∂t = x0 ∂

∂x x0∂u
∂x + 0.

With the equation in the proper form you can read off the relevant terms:

m = 0

c x, t, u, ∂u∂x = π2

f x, t, u, ∂u∂x = ∂u
∂x

s x, t, u, ∂u∂x = 0

Now you can create a function to code the equation. The function should have the signature [c,f,s]
= pdex1pde(x,t,u,dudx):

 Solve Single PDE
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• x is the independent spatial variable.
• t is the independent time variable.
• u is the dependent variable being differentiated with respect to x and t.
• dudx is the partial spatial derivative ∂u/ ∂x.
• The outputs c, f, and s correspond to coefficients in the standard PDE equation form expected by

pdepe. These coefficients are coded in terms of the input variables x, t, u, and dudx.

As a result, the equation in this example can be represented by the function:

function [c,f,s] = pdex1pde(x,t,u,dudx)
c = pi^2;
f = dudx;
s = 0;
end

(Note: All functions are included as local functions at the end of the example.)

Code Initial Condition

Next, write a function that returns the initial condition. The initial condition is applied at the first
time value tspan(1). The function should have the signature u0 = pdex1ic(x).

The corresponding function is

function u0 = pdex1ic(x)
u0 = sin(pi*x);
end

Code Boundary Conditions

Now, write a function that evaluates the boundary conditions. For problems posed on the interval
a ≤ x ≤ b, the boundary conditions apply for all t and either x = a or x = b. The standard form for the
boundary conditions expected by the solver is

p x, t, u + q x, t f x, t, u, ∂u∂x = 0 .

Rewrite the boundary conditions in this standard form and read off the coefficient values.

For x = 0, the equation is

u 0, t = 0 u + 0 ⋅ ∂u∂x = 0 .

The coefficients are:

• p 0, t, u = u
• q 0, t = 0

For x = 1, the equation is

πe−t + ∂u
∂x 1, t = 0 πe−t + 1 ⋅ ∂u∂x 1, t = 0 .

The coefficients are:
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• p 1, t, u = πe−t

• q 1, t = 1

Since the boundary condition function is expressed in terms of f x, t, u, ∂u∂x , and this term is already
defined in the main PDE function, you do not need to specify this piece of the equation in the
boundary condition function. You need only specify the values of p x, t, u  and q x, t  at each boundary.

The boundary function should use the function signature [pl,ql,pr,qr] =
pdex1bc(xl,ul,xr,ur,t):

• The inputs xl and ul correspond to u and x for the left boundary.
• The inputs xr and ur correspond to u and x for the right boundary.
• t is the independent time variable.
• The outputs pl and ql correspond to p x, t, u  and q x, t  for the left boundary (x = 0 for this

problem).
• The outputs pr and qr correspond to p x, t, u  and q x, t  for the right boundary (x = 1 for this

problem).

The boundary conditions in this example are represented by the function:

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;
end

Select Solution Mesh

Before solving the equation you need to specify the mesh points t, x  at which you want pdepe to
evaluate the solution. Specify the points as vectors t and x. The vectors t and x play different roles in
the solver. In particular, the cost and accuracy of the solution depend strongly on the length of the
vector x. However, the computation is much less sensitive to the values in the vector t.

For this problem, use a mesh with 20 equally spaced points in the spatial interval [0,1] and five values
of t from the time interval [0,2].

x = linspace(0,1,20);
t = linspace(0,2,5);

Solve Equation

Finally, solve the equation using the symmetry m, the PDE equation, the initial conditions, the
boundary conditions, and the meshes for x and t.

m = 0;
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

pdepe returns the solution in a 3-D array sol, where sol(i,j,k) approximates the kth component
of the solution uk evaluated at t(i) and x(j). The size of sol is length(t)-by-length(x)-by-
length(u0), since u0 specifies an initial condition for each solution component. For this problem, u
has only one component, so sol is a 5-by-20 matrix, but in general you can extract the kth solution
component with the command u = sol(:,:,k).
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Extract the first solution component from sol.

u = sol(:,:,1);

Plot Solution

Create a surface plot of the solution.

surf(x,t,u)
title('Numerical solution computed with 20 mesh points')
xlabel('Distance x')
ylabel('Time t')

The initial condition and boundary conditions of this problem were chosen so that there would be an
analytical solution, given by

u x, t = e−t sin πx .

Plot the analytical solution with the same mesh points.

surf(x,t,exp(-t)'*sin(pi*x))
title('True solution plotted with 20 mesh points')
xlabel('Distance x')
ylabel('Time t')

13 Partial Differential Equations (PDEs)

13-12



Now, compare the numerical and analytical solutions at tf , the final value of t. In this example tf = 2.

plot(x,u(end,:),'o',x,exp(-t(end))*sin(pi*x))
title('Solution at t = 2')
legend('Numerical, 20 mesh points','Analytical','Location','South')
xlabel('Distance x')
ylabel('u(x,2)')
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Local Functions

Listed here are the local helper functions that the PDE solver pdepe calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function [c,f,s] = pdex1pde(x,t,u,dudx) % Equation to solve
c = pi^2;
f = dudx;
s = 0;
end
%----------------------------------------------
function u0 = pdex1ic(x) % Initial conditions
u0 = sin(pi*x);
end
%----------------------------------------------
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) % Boundary conditions
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;
end
%----------------------------------------------

See Also
pdepe
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More About
• “Solving Partial Differential Equations” on page 13-2
• “Solve PDE with Discontinuity” on page 13-16
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Solve PDE with Discontinuity
This example shows how to solve a PDE that interfaces with a material. The material interface
creates a discontinuity in the problem at x = 0 . 5, and the initial condition has a discontinuity at the
right boundary x = 1.

Consider the piecewise PDE

∂u
∂t = x−2 ∂

∂x x2 5∂u∂x − 1000eu 0 ≤ x ≤ 0 . 5

∂u
∂t = x−2 ∂

∂x x2 ∂u
∂x − eu 0 . 5 ≤ x ≤ 1

The initial conditions are

u x, 0 = 0 0 ≤ x < 1 ,
u 1, 0 = 1 x = 1 .

The boundary conditions are

∂u
∂x = 0 x = 0 ,

u 1, t = 1 x = 1 .

To solve this equation in MATLAB, you need to code the equation, the initial conditions, and the
boundary conditions, then select a suitable solution mesh before calling the solver pdepe. You either
can include the required functions as local functions at the end of a file (as done here), or save them
as separate, named files in a directory on the MATLAB path.

Code Equation

Before you can code the equation, you need to make sure that it is in a form that the pdepe solver
expects. The standard form that pdepe expects is

c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x .

In this case, the PDE is in the proper form, so you can read off the values of the coefficients.

∂u
∂t = x−2 ∂

∂x x2 5∂u∂x − 1000eu 0 ≤ x ≤ 0 . 5
∂u
∂t = x−2 ∂

∂x x2 ∂u
∂x − eu 0 . 5 ≤ x ≤ 1

The values for the flux term f x, t, u, ∂u∂x  and source term s x . t, u, ∂u∂x  change depending on the value
of x. The coefficients are:

m = 2

c x, t, u, ∂u∂x = 1

f x, t, u, ∂u∂x = 5∂u∂x 0 ≤ x ≤ 0 . 5

f x, t, u, ∂u∂x = ∂u
∂x 0 . 5 ≤ x ≤ 1
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s x, t, u, ∂u∂x = − 1000eu 0 ≤ x ≤ 0 . 5

s x, t, u, ∂u∂x = − eu 0 . 5 ≤ x ≤ 1

Now you can create a function to code the equation. The function should have the signature [c,f,s]
= pdex2pde(x,t,u,dudx):

• x is the independent spatial variable.
• t is the independent time variable.
• u is the dependent variable being differentiated with respect to x and t.
• dudx is the partial spatial derivative ∂u/ ∂x.
• The outputs c, f, and s correspond to coefficients in the standard PDE equation form expected by

pdepe. These coefficients are coded in terms of the input variables x, t, u, and dudx.

As a result, the equation in this example can be represented by the function:

function [c,f,s] = pdex2pde(x,t,u,dudx)
c = 1;
if x <= 0.5
    f = 5*dudx;
    s = -1000*exp(u);
else
    f = dudx;
    s = -exp(u);
end
end

(Note: All functions are included as local functions at the end of the example.)

Code Initial Conditions

Next, write a function that returns the initial conditions. The initial condition is applied at the first
time value and provides the value of u x, t0  for any value of x. Use the function signature u0 =
pdex2ic(x) to write the function.

The initial conditions are

u x, 0 = 0 0 ≤ x < 1 ,
u 1, 0 = 1 x = 1 .

The corresponding function is

function u0 = pdex2ic(x)
if x < 1
    u0 = 0;
else
    u0 = 1;
end
end
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Code Boundary Conditions

Now, write a function that evaluates the boundary conditions. For problems posed on the interval
a ≤ x ≤ b, the boundary conditions apply for all t and either x = a or x = b. The standard form for the
boundary conditions expected by the solver is

p x, t, u + q x, t f x, t, u, ∂u∂x = 0 .

Since this example has spherical symmetry (m = 2), the pdepe solver automatically enforces the left
boundary condition to bound the solution at the origin, and ignores any conditions specified for the
left boundary in the boundary function. So for the left boundary condition, you can specify
pL = qL = 0. For the right boundary condition, you can rewrite the boundary condition in the standard
form and read off the coefficient values for pR and qR.

For x = 1, the equation is u 1, t = 1 u− 1 + 0 ⋅ ∂u∂x = 0. The coefficients are:

• pR 1, t, u = u− 1

• qR 1, t = 0

The boundary function should use the function signature [pl,ql,pr,qr] =
pdex2bc(xl,ul,xr,ur,t):

• The inputs xl and ul correspond to u and x for the left boundary.
• The inputs xr and ur correspond to u and x for the right boundary.
• t is the independent time variable.
• The outputs pl and ql correspond to pL x, t, u  and qL x, t  for the left boundary (x = 0 for this

problem).
• The outputs pr and qr correspond to pR x, t, u  and qR x, t  for the right boundary (x = 1 for this

problem).

The boundary conditions in this example are represented by the function:

function [pl,ql,pr,qr] = pdex2bc(xl,ul,xr,ur,t)
pl = 0; 
ql = 0; 
pr = ur - 1;
qr = 0;
end

Select Solution Mesh

The spatial mesh should include several values near x = 0 . 5 to account for the discontinuous
interface, as well as points near x = 1 because of the inconsistent initial value (u 1, 0 = 1) and
boundary value (u 1, t = 0) at that point. The solution changes rapidly for small t, so use a time step
that can resolve this sharp change.

x = [0 0.1 0.2 0.3 0.4 0.45 0.475 0.5 0.525 0.55 0.6 0.7 0.8 0.9 0.95 0.975 0.99 1];
t = [0 0.001 0.005 0.01 0.05 0.1 0.5 1];
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Solve Equation

Finally, solve the equation using the symmetry m, the PDE equation, the initial conditions, the
boundary conditions, and the meshes for x and t.

m = 2;
sol = pdepe(m,@pdex2pde,@pdex2ic,@pdex2bc,x,t);

pdepe returns the solution in a 3-D array sol, where sol(i,j,k) approximates the kth component
of the solution uk evaluated at t(i) and x(j). The size of sol is length(t)-by-length(x)-by-
length(u0), since u0 specifies an initial condition for each solution component. For this problem, u
has only one component, so sol is a 8-by-18 matrix, but in general you can extract the kth solution
component with the command u = sol(:,:,k).

Extract the first solution component from sol.

u = sol(:,:,1);

Plot Solution

Create a surface plot of the solution u plotted at the selected mesh points for x and t. Since m = 2 the
problem is posed in a spherical geometry with spherical symmetry, so the solution only changes in the
radial x direction.

surf(x,t,u)
title('Numerical solution with nonuniform mesh')
xlabel('Distance x')
ylabel('Time t')
zlabel('Solution u')

 Solve PDE with Discontinuity

13-19



Now, plot just x and u to get a side view of the contours in the surface plot. Add a line at x = 0 . 5 to
highlight the effect of the material interface.

plot(x,u,x,u,'*')
line([0.5 0.5], [-3 1], 'Color', 'k')
xlabel('Distance x')
ylabel('Solution u')
title('Solution profiles at several times')
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Local Functions

Listed here are the local helper functions that the PDE solver pdepe calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function [c,f,s] = pdex2pde(x,t,u,dudx) % Equation to solve
c = 1;
if x <= 0.5
    f = 5*dudx;
    s = -1000*exp(u);
else
    f = dudx;
    s = -exp(u);
end
end
%----------------------------------------------
function u0 = pdex2ic(x) %Initial conditions
if x < 1
    u0 = 0;
else
    u0 = 1;
end
end
%----------------------------------------------
function [pl,ql,pr,qr] = pdex2bc(xl,ul,xr,ur,t) % Boundary conditions
pl = 0;
ql = 0;
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pr = ur - 1;
qr = 0;
end
%----------------------------------------------

See Also
pdepe

More About
• “Solving Partial Differential Equations” on page 13-2
• “Solve PDE and Compute Partial Derivatives” on page 13-23
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Solve PDE and Compute Partial Derivatives
This example shows how to solve a transistor partial differential equation (PDE) and use the results to
obtain partial derivatives that are part of solving a larger problem.

Consider the PDE

∂u
∂t = D∂

2u
∂x2 −

Dη
L
∂u
∂x .

This equation arises in transistor theory [1], and u x, t  is a function describing the concentration of
excess charge carriers (or holes) in the base of a PNP transistor. D and η are physical constants. The
equation holds on the interval 0 ≤ x ≤ L for times t ≥ 0.

The initial condition includes a constant K and is given by

u x, 0 = K L
D

1− e−η 1− x/L

η .

The problem has boundary conditions given by

u 0, t = u L, t = 0 .

For fixed x, the solution to the equation u x, t  describes the collapse of excess charge as t ∞. This
collapse produces a current, called the emitter discharge current, which has another constant Ip:

I t =
IpD
K

∂
∂x u x, t

x = 0
.

The equation is valid for t > 0 due to the inconsistency in the boundary values at x = 0 for t = 0 and
t > 0. Since the PDE has a closed-form series solution for u x, t , you can calculate the emitter
discharge current analytically as well as numerically, and compare the results.

To solve this problem in MATLAB, you need to code the PDE equation, initial conditions, and
boundary conditions, then select a suitable solution mesh before calling the solver pdepe. You either
can include the required functions as local functions at the end of a file (as done here), or save them
as separate, named files in a directory on the MATLAB path.

Define Physical Constants

To keep track of the physical constants, create a structure array with fields for each one. When you
later define functions for the equations, the initial condition, and the boundary conditions, you can
pass in this structure as an extra argument so that the functions have access to the constants.

C.L = 1;
C.D = 0.1;
C.eta = 10;
C.K = 1;
C.Ip = 1;

Code Equation

Before you can code the equation, you need to make sure that it is in the form that the pdepe solver
expects:
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c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x .

In this form, the PDE is

∂u
∂t = x0 ∂

∂x x0 D∂u∂x − Dη
L
∂u
∂x .

So the values of the coefficients in the equation are

• m = 0 (Cartesian coordinates with no angular symmetry)
• c x, t, u, ∂u∂x = 1

• f x, t, u, ∂u∂x = D∂u∂x
• s x, t, u, ∂u∂x = − Dη

L
∂u
∂x

Now you can create a function to code the equation. The function should have the signature [c,f,s]
= transistorPDE(x,t,u,dudx,C):

• x is the independent spatial variable.
• t is the independent time variable.
• u is the dependent variable being differentiated with respect to x and t.
• dudx is the partial spatial derivative ∂u/ ∂x.
• C is an extra input containing the physical constants.
• The outputs c, f, and s correspond to coefficients in the standard PDE equation form expected by

pdepe.

As a result, the equation in this example can be represented by the function:

function [c,f,s] = transistorPDE(x,t,u,dudx,C)
D = C.D;
eta = C.eta;
L = C.L;

c = 1;
f = D*dudx;
s = -(D*eta/L)*dudx;
end

(Note: All functions are included as local functions at the end of the example.)

Code Initial Condition

Next, write a function that returns the initial condition. The initial condition is applied at the first
time value, and provides the value of u x, t0  for any value of x. Use the function signature u0 =
transistorIC(x,C) to write the function.

The initial condition is

u x, 0 = K L
D

1− e−η 1− x/L
η .
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The corresponding function is

function u0 = transistorIC(x,C)
K = C.K;
L = C.L;
D = C.D;
eta = C.eta;

u0 = (K*L/D)*(1 - exp(-eta*(1 - x/L)))/eta;
end

Code Boundary Conditions

Now, write a function that evaluates the boundary conditions u 0, t = u 1, t = 0. For problems posed
on the interval a ≤ x ≤ b, the boundary conditions apply for all t and either x = a or x = b. The
standard form for the boundary conditions expected by the solver is

p x, t, u + q x, t f x, t, u, ∂u∂x = 0 .

Written in this form, the boundary conditions for this problem are

- For x = 0, the equation is u + 0 ⋅ d∂u∂x = 0 . The coefficients are:

• pL x, t, u = u,
• qL x, t = 0 .

- Likewise for x = 1, the equation is u + 0 ⋅ d∂u∂x = 0 . The coefficients are:

• pR x, t, u = u,
• qR x, t = 0 .

The boundary function should use the function signature [pl,ql,pr,qr] =
transistorBC(xl,ul,xr,ur,t):

• The inputs xl and ul correspond to x and u for the left boundary.
• The inputs xr and ur correspond to x and u for the right boundary.
• t is the independent time variable.
• The outputs pl and ql correspond to pL x, t, u  and qL x, t  for the left boundary (x = 0 for this

problem).
• The outputs pr and qr correspond to pR x, t, u  and qR x, t  for the right boundary (x = 1 for this

problem).

The boundary conditions in this example are represented by the function:

function [pl,ql,pr,qr] = transistorBC(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = ur;
qr = 0;
end
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Select Solution Mesh

The solution mesh defines the values of x and t where the solution is evaluated by the solver. Since
the solution to this problem changes rapidly, use a relatively fine mesh of 50 spatial points in the
interval 0 ≤ x ≤ L and 50 time points in the interval 0 ≤ t ≤ 1.

x = linspace(0,C.L,50);
t = linspace(0,1,50);

Solve Equation

Finally, solve the equation using the symmetry m, the PDE equation, the initial condition, the
boundary conditions, and the meshes for x and t. Since pdepe expects the PDE function to use four
inputs and the initial condition function to use one input, create function handles that pass in the
structure of physical constants as an extra input.

m = 0;
eqn = @(x,t,u,dudx) transistorPDE(x,t,u,dudx,C);
ic = @(x) transistorIC(x,C);
sol = pdepe(m,eqn,ic,@transistorBC,x,t);

pdepe returns the solution in a 3-D array sol, where sol(i,j,k) approximates the kth component
of the solution ukevaluated at t(i) and x(j). For this problem u has only one component, but in
general you can extract the kth solution component with the command u = sol(:,:,k).

u = sol(:,:,1);

Plot Solution

Create a surface plot of the solution u plotted at the selected mesh points for x and t.

surf(x,t,u)
title('Numerical Solution (50 mesh points)')
xlabel('Distance x')
ylabel('Time t')
zlabel('Solution u(x,t)')
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Now, plot just x and u to get a side view of the contours in the surface plot.

plot(x,u)
xlabel('Distance x')
ylabel('Solution u(x,t)')
title('Solution profiles at several times')
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Compute Emitter Discharge Current

Using a series solution for u x, t , the emitter discharge current can be expressed as the infinite series
[1]:

I t = 2π2Ip
1− e−η

η ∑
n = 1

∞ n2

n2π2 + η2/4
e
− dt

L2 n2π2 + η2/4
.

Write a function to calculate the analytic solution for I t  using 40 terms in the series. The only
variable is time, but specify a second input to the function for the structure of constants.

function It = serex3(t,C) % Approximate I(t) by series expansion.
Ip = C.Ip;
eta = C.eta;
D = C.D;
L = C.L;

It = 0;
for n = 1:40 % Use 40 terms
  m = (n*pi)^2 + 0.25*eta^2;
  It = It + ((n*pi)^2 / m)* exp(-(D/L^2)*m*t);
end
It = 2*Ip*((1 - exp(-eta))/eta)*It;
end

Using the numeric solution for u x, t  as computed by pdepe, you can also calculate the numeric
approximation for I t  at x = 0 with

13 Partial Differential Equations (PDEs)

13-28



I t =
IpD
K

∂
∂x u x, t

x = 0
.

Calculate the analytic and numeric solutions for I t  and plot the results. Use pdeval to compute the
value of ∂u/ ∂x at x = 0.

nt = length(t);
I = zeros(1,nt);
seriesI = zeros(1,nt);
iok = 2:nt;
for j = iok
   % At time t(j), compute du/dx at x = 0.
   [~,I(j)] = pdeval(m,x,u(j,:),0);
   seriesI(j) = serex3(t(j),C);
end
% Numeric solution has form I(t) = (I_p*D/K)*du(0,t)/dx
I = (C.Ip*C.D/C.K)*I;

plot(t(iok),I(iok),'o',t(iok),seriesI(iok))
legend('From PDEPE + PDEVAL','From series')
title('Emitter discharge current I(t)')
xlabel('Time t')

The results match reasonably well. You can further improve the numeric result from pdepe by using a
finer solution mesh.
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Local Functions

Listed here are the local helper functions that the PDE solver pdepe calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function [c,f,s] = transistorPDE(x,t,u,dudx,C) % Equation to solve
D = C.D;
eta = C.eta;
L = C.L;

c = 1;
f = D*dudx;
s = -(D*eta/L)*dudx;
end
% ----------------------------------------------------
function u0 = transistorIC(x,C) % Initial condition
K = C.K;
L = C.L;
D = C.D;
eta = C.eta;

u0 = (K*L/D)*(1 - exp(-eta*(1 - x/L)))/eta;
end
% ----------------------------------------------------
function [pl,ql,pr,qr] = transistorBC(xl,ul,xr,ur,t) % Boundary conditions
pl = ul;
ql = 0;
pr = ur;
qr = 0;
end
% ----------------------------------------------------
function It = serex3(t,C) % Approximate I(t) by series expansion.
Ip = C.Ip;
eta = C.eta;
D = C.D;
L = C.L;

It = 0;
for n = 1:40 % Use 40 terms
  m = (n*pi)^2 + 0.25*eta^2;
  It = It + ((n*pi)^2 / m)* exp(-(D/L^2)*m*t);
end
It = 2*Ip*((1 - exp(-eta))/eta)*It;
end
% ----------------------------------------------------

References

[1] Zachmanoglou, E.C. and D.L. Thoe. Introduction to Partial Differential Equations with
Applications. Dover, New York, 1986.

See Also
pdepe
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More About
• “Solving Partial Differential Equations” on page 13-2
• “Solve System of PDEs” on page 13-32
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Solve System of PDEs
This example shows how to formulate, compute, and plot the solution to a system of two partial
differential equations.

Consider the system of PDEs

∂u1
∂t = 0 . 024

∂2u1
∂x2 − F u1− u2 ,

∂u2
∂t = 0 . 170

∂2u2
∂x2 + F u1− u2 .

(The function F y = e5 . 73y − e−11 . 46y is used as a shorthand.)

The equation holds on the interval 0 ≤ x ≤ 1 for times t ≥ 0. The initial conditions are

u1 x, 0 = 1,

u2 x, 0 = 0 .

The boundary conditions are

∂
∂x u1 0, t = 0,

u2 0, t = 0,
∂
∂x u2 1, t = 0,

u1 1, t = 1 .

To solve this equation in MATLAB, you need to code the equation, the initial conditions, and the
boundary conditions, then select a suitable solution mesh before calling the solver pdepe. You either
can include the required functions as local functions at the end of a file (as done here), or save them
as separate, named files in a directory on the MATLAB path.

Code Equation

Before you can code the equation, you need to make sure that it is in the form that the pdepe solver
expects:

c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x .

In this form, the PDE coefficients are matrix-valued and the equation becomes

1 0
0 1

∂
∂t

u1
u2

= ∂
∂x

0 . 024
∂u1
∂x

0 . 170
∂u2
∂x

+
−F u1− u2
F u1− u2

.

So the values of the coefficients in the equation are
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m = 0

c x, t, u, ∂u∂x =
1
1

 (diagonal values only)

f x, t, u, ∂u∂x =
0 . 024

∂u1
∂x

0 . 170
∂u2
∂x

s x, t, u, ∂u∂x =
−F u1− u2
F u1− u2

Now you can create a function to code the equation. The function should have the signature [c,f,s]
= pdefun(x,t,u,dudx):

• x is the independent spatial variable.
• t is the independent time variable.
• u is the dependent variable being differentiated with respect to x and t. It is a two-element vector

where u(1) is u1 x, t  and u(2) is u2 x, t .
• dudx is the partial spatial derivative ∂u/ ∂x. It is a two-element vector where dudx(1) is ∂u1/ ∂x

and dudx(2) is ∂u2/ ∂x.
• The outputs c, f, and s correspond to coefficients in the standard PDE equation form expected by

pdepe.

As a result, the equations in this example can be represented by the function:

function [c,f,s] = pdefun(x,t,u,dudx)
c = [1; 1];
f = [0.024; 0.17] .* dudx;
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];
end

(Note: All functions are included as local functions at the end of the example.)

Code Initial Conditions

Next, write a function that returns the initial condition. The initial condition is applied at the first
time value and provides the value of u x, t0  for any value of x. The number of initial conditions must
equal the number of equations, so for this problem there are two initial conditions. Use the function
signature u0 = pdeic(x) to write the function.

The initial conditions are

u1 x, 0 = 1,

u2 x, 0 = 0 .

The corresponding function is
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function u0 = pdeic(x)
u0 = [1; 0];
end

Code Boundary Conditions

Now, write a function that evaluates the boundary conditions

∂
∂x u1 0, t = 0,

u2 0, t = 0,
∂
∂x u2 1, t = 0,

u1 1, t = 1 .

For problems posed on the interval a ≤ x ≤ b, the boundary conditions apply for all t and either x = a
or x = b. The standard form for the boundary conditions expected by the solver is

p x, t, u + q x, t f x, t, u, ∂u∂x = 0 .

Written in this form, the boundary conditions for the partial derivatives of u need to be expressed in
terms of the flux f x, t, u, ∂u∂x . So the boundary conditions for this problem are

For x = 0, the equation is

0
u2

+
1
0
⋅

0 . 024
∂u1
∂x

0 . 170
∂u2
∂x

= 0 .

The coefficients are:

pL x, t, u =
0
u2

,

qL x, t =
1
0

.

Likewise, for x = 1 the equation is

u1− 1
0

+
0
1
⋅

0 . 024
∂u1
∂x

0 . 170
∂u2
∂x

= 0 .

The coefficients are:

pR x, t, u =
u1− 1

0
,

qR x, t =
0
1

.

The boundary function should use the function signature [pl,ql,pr,qr] =
pdebc(xl,ul,xr,ur,t):
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• The inputs xl and ul correspond to u and x for the left boundary.
• The inputs xr and ur correspond to u and x for the right boundary.
• t is the independent time variable.
• The outputs pl and ql correspond to pL x, t, u  and qL x, t  for the left boundary (x = 0 for this

problem).
• The outputs pr and qr correspond to pR x, t, u  and qR x, t  for the right boundary (x = 1 for this

problem).

The boundary conditions in this example are represented by the function:

function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];
end

Select Solution Mesh

The solution to this problem changes rapidly when t is small. Although pdepe selects a time step that
is appropriate to resolve the sharp changes, to see the behavior in the output plots you need to select
appropriate output times. For the spatial mesh, there are boundary layers in the solution at both ends
of 0 ≤ x ≤ 1, so you need to specify mesh points there to resolve the sharp changes.

x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

Solve Equation

Finally, solve the equation using the symmetry m, the PDE equation, the initial conditions, the
boundary conditions, and the meshes for x and t.

m = 0;
sol = pdepe(m,@pdefun,@pdeic,@pdebc,x,t);

pdepe returns the solution in a 3-D array sol, where sol(i,j,k) approximates the kth component
of the solution uk evaluated at t(i) and x(j). Extract each solution component into a separate
variable.

u1 = sol(:,:,1);
u2 = sol(:,:,2);

Plot Solution

Create surface plots of the solutions for u1 and u2 plotted at the selected mesh points for x and t.

surf(x,t,u1)
title('u_1(x,t)')
xlabel('Distance x')
ylabel('Time t')
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surf(x,t,u2)
title('u_2(x,t)')
xlabel('Distance x')
ylabel('Time t')
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Local Functions

Listed here are the local helper functions that the PDE solver pdepe calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function [c,f,s] = pdefun(x,t,u,dudx) % Equation to solve
c = [1; 1];
f = [0.024; 0.17] .* dudx;
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];
end
% ---------------------------------------------
function u0 = pdeic(x) % Initial Conditions
u0 = [1; 0];
end
% ---------------------------------------------
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t) % Boundary Conditions
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];
end
% ---------------------------------------------

See Also
pdepe
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More About
• “Solving Partial Differential Equations” on page 13-2
• “Solve Single PDE” on page 13-9
• “Solve System of PDEs with Initial Condition Step Functions” on page 13-39
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Solve System of PDEs with Initial Condition Step Functions
This example shows how to solve a system of partial differential equations that uses step functions in
the initial conditions.

Consider the PDEs

∂n
∂t = d∂

2n
∂x2 − a n∂

2c
∂x2 + S r n N − n ,

∂c
∂t = ∂2c

∂x2 + S n
n + 1 − c .

The equations involve the constant parameters d, a, S, r, and N, and are defined for 0 ≤ x ≤ 1 and
t ≥ 0. These equations arise in a mathematical model of the first steps of tumor-related angiogenesis
[1]. n x, t  represents the cell density of endothelial cells, and c x, t  the concentration of a protein
they release in response to the tumor.

This problem has a constant, steady state when

n0
c0

=
1

0 . 5
.

However, a stability analysis predicts evolution of the system to an inhomogeneous solution [1]. So
step functions are used as the initial conditions to perturb the steady state and stimulate evolution of
the system.

The boundary conditions require that both solution components have zero flux at x = 0 and x = 1.

∂
∂x n 0, t = ∂

∂x n 1, t = 0,

∂
∂x c 0, t = ∂

∂x c 1, t = 0 .

To solve this system of equations in MATLAB, you need to code the equations, initial conditions, and
boundary conditions, then select a suitable solution mesh before calling the solver pdepe. You either
can include the required functions as local functions at the end of a file (as done here), or save them
as separate, named files in a directory on the MATLAB path.

Code Equation

Before you can code the equation, you need to make sure that it is in the form that the pdepe solver
expects:

c x, t, u, ∂u∂x
∂u
∂t = x−m ∂

∂x xmf x, t, u, ∂u∂x + s x, t, u, ∂u∂x .

Since there are two equations in the system of PDEs, the system of PDEs can be rewritten as

1 0
0 1

∂
∂t

n
c

= ∂
∂x

d∂n∂x − a n∂c∂x
∂c
∂x

+
S r n N − n

S n
n + 1 − c

.
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The values of the coefficients in the equation are then

m = 0

c x, t, u, ∂u∂x =
1
1

 (diagonal values only)

f x, t, u, ∂u∂x =
d∂n∂x − a n∂c∂x

∂c
∂x

s x, t, u, ∂u∂x =
S r n N − n

S n
n + 1 − c

Now you can create a function to code the equation. The function should have the signature [c,f,s]
= angiopde(x,t,u,dudx):

• x is the independent spatial variable.
• t is the independent time variable.
• u is the dependent variable being differentiated with respect to x and t. It is a two-element vector

where u(1) is n x, t  and u(2) is c x, t .
• dudx is the partial spatial derivative ∂u/ ∂x. It is a two-element vector where dudx(1) is ∂n/ ∂x

and dudx(2) is ∂c/ ∂x.
• The outputs c, f, and s correspond to coefficients in the standard PDE equation form expected by

pdepe.

As a result, the equations in this example can be represented by the function:

function [c,f,s] = angiopde(x,t,u,dudx)
d = 1e-3;
a = 3.8;
S = 3;
r = 0.88;
N = 1;

c = [1; 1];
f = [d*dudx(1) - a*u(1)*dudx(2)
     dudx(2)];
s = [S*r*u(1)*(N - u(1));
     S*(u(1)/(u(1) + 1) - u(2))];
end

(Note: All functions are included as local functions at the end of the example.)

Code Initial Conditions

Next, write a function that returns the initial condition. The initial condition is applied at the first
time value and provides the value of n x, t0  and c x, t0  for any value of x. Use the function signature
u0 = angioic(x) to write the function.

This problem has a constant, steady state when
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n0
c0

=
1

0 . 5
.

However, a stability analysis predicts evolution of the system to an inhomogenous solution [1]. So,
step functions are used as the initial conditions to perturb the steady state and stimulate evolution of
the system.

u x, 0 =
n0
c0

,

u x, 0 =
1 . 05u1 0 . 3 ≤ x ≤ 0 . 6

1 . 0005u2 0 . 3 ≤ x ≤ 0 . 6

The corresponding function is

function u0 = angioic(x)
u0 = [1; 0.5];
if x >= 0.3 && x <= 0.6
  u0(1) = 1.05 * u0(1);
  u0(2) = 1.0005 * u0(2);
end
end

Code Boundary Conditions

Now, write a function that evaluates the boundary conditions

∂
∂x n 0, t = ∂

∂x n 1, t = 0,

∂
∂x c 0, t = ∂

∂x c 1, t = 0 .

For problems posed on the interval a ≤ x ≤ b, the boundary conditions apply for all t and either x = a
or x = b. The standard form for the boundary conditions expected by the solver is

p x, t, u + q x, t f x, t, u, ∂u∂x = 0 .

For x = 0, the boundary condition equation is

0
0

p x, t, u +
1
1
⋅

d∂n∂x − a n∂c∂x
∂c
∂x

= 0 .

So the coefficients are:

•
pL x, t, u =

0
0

,

•
qL x, t =

1
1

.

For x = 1 the boundary conditions are the same, so pR x, t, u =
0
0

 and qR x, t =
1
1

.
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The boundary function should use the function signature [pl,ql,pr,qr] =
angiobc(xl,ul,xr,ur,t), where:

• The inputs xl and ul correspond to u and x for the left boundary.
• The inputs xr and ur correspond to u and x for the right boundary.
• t is the independent time variable.
• The outputs pl and ql correspond to pL x, t, u  and qL x, t  for the left boundary (x = 0 for this

problem).
• The outputs pr and qr correspond to pR x, t, u  and qR x, t  for the right boundary (x = 1 for this

problem).

The boundary conditions in this example are represented by the function:

function [pl,ql,pr,qr] = angiobc(xl,ul,xr,ur,t)
pl = [0; 0];
ql = [1; 1];
pr = pl;
qr = ql;
end

Select Solution Mesh

A long time interval is required to see the limiting behavior of the equations, so use 10 points in the
interval 0 ≤ t ≤ 200. Also, the limit distribution of c x, t  varies by only about 0.1% over the interval
0 ≤ x ≤ 1, so a relatively fine spatial mesh with 50 points is appropriate.

x = linspace(0,1,50);
t = linspace(0,200,10);

Solve Equation

Finally, solve the equation using the symmetry m, the PDE equation, the initial condition, the
boundary conditions, and the meshes for x and t.

m = 0;
sol = pdepe(m,@angiopde,@angioic,@angiobc,x,t);

pdepe returns the solution in a 3-D array sol, where sol(i,j,k) approximates the kth component
of the solution uk evaluated at t(i) and x(j). Extract the solution components into separate
variables.

n = sol(:,:,1);
c = sol(:,:,2);

Plot Solution

Create a surface plot of the solution components n and c plotted at the selected mesh points for x and
t.

surf(x,t,c)
title('c(x,t): Concentration of Fibronectin')
xlabel('Distance x')
ylabel('Time t')
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surf(x,t,n)
title('n(x,t): Density of Endothelial Cells')
xlabel('Distance x')
ylabel('Time t')

 Solve System of PDEs with Initial Condition Step Functions

13-43



Now plot just the final distributions of the solutions at tf = 200. These plots correspond to Figures 3
and 4 in [1].

plot(x,n(end,:))
title('Final distribution of n(x,t_f)')
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plot(x,c(end,:))
title('Final distribution of c(x,t_f)')
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References

[1] Humphreys, M.E. and M.A.J. Chaplain. "A mathematical model of the first steps of tumour-related
angiogenesis: Capillary sprout formation and secondary branching." IMA Journal of Mathematics
Applied in Medicine & Biology, 13 (1996), pp. 73-98.

Local Functions

Listed here are the local helper functions that the PDE solver pdepe calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function [c,f,s] = angiopde(x,t,u,dudx) % Equation to solve
d = 1e-3;
a = 3.8;
S = 3;
r = 0.88;
N = 1;

c = [1; 1];
f = [d*dudx(1) - a*u(1)*dudx(2)
     dudx(2)];
s = [S*r*u(1)*(N - u(1));
     S*(u(1)/(u(1) + 1) - u(2))];
end
% ---------------------------------------------
function u0 = angioic(x) % Initial Conditions
u0 = [1; 0.5];
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if x >= 0.3 && x <= 0.6
  u0(1) = 1.05 * u0(1);
  u0(2) = 1.0005 * u0(2);
end
end
% ---------------------------------------------
function [pl,ql,pr,qr] = angiobc(xl,ul,xr,ur,t) % Boundary Conditions
pl = [0; 0];
ql = [1; 1];
pr = pl;
qr = ql;
end
% ---------------------------------------------

See Also
pdepe

More About
• “Solving Partial Differential Equations” on page 13-2
• “Solve Single PDE” on page 13-9
• “Solve System of PDEs” on page 13-32
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Delay Differential Equations (DDEs)

• “Solving Delay Differential Equations” on page 14-2
• “DDE with Constant Delays” on page 14-6
• “DDE with State-Dependent Delays” on page 14-10
• “Cardiovascular Model DDE with Discontinuities” on page 14-14
• “DDE of Neutral Type” on page 14-19
• “Initial Value DDE of Neutral Type” on page 14-23
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Solving Delay Differential Equations
Delay differential equations (DDEs) are ordinary differential equations that relate the solution at the
current time to the solution at past times. This delay can be constant, time-dependent, state-
dependent, or derivative-dependent. In order for the integration to begin, you generally must provide
a solution history so that the solution is accessible to the solver for times before the initial integration
point.

Constant Delay DDEs
A system of differential equations with constant delays has the form:

y′ t = f t, y t , y t − τ1 , …, y t − τk .

Here, t is the independent variable, y is a column vector of dependent variables, and y ′ represents
the first derivative of y with respect to t. The delays, τ1,…,τk, are positive constants.

The dde23 function solves DDEs with constant delays with history y(t) = S(t) for t <t0.

The solutions of DDEs are generally continuous, but they have discontinuities in their derivatives. The
dde23 function tracks discontinuities in low-order derivatives. It integrates the differential equations
with the same explicit Runge-Kutta (2,3) pair and interpolant used by ode23. The Runge-Kutta
formulas are implicit for step sizes bigger than the delays. When y(t) is smooth enough to justify steps
this big, the implicit formulas are evaluated by a predictor-corrector iteration.

Time-Dependent and State-Dependent DDEs
Constant time delays are a special case of the more general DDE form:

y′ t = f t, y t , y dy1 , ..., y dyp .

Time-dependent and state-dependent DDEs involve delays dy1,..., dyk that can depend on both time t
and state y. The delays dyj(t, y) must satisfy dyj(t, y) ≤ t on the interval [t0, tf] with t0 < tf.

The ddesd function finds the solution, y(t), for time-dependent and state-dependent DDEs with
history y(t) = S(t) for t < t0. The ddesd function integrates with the classic four-stage, fourth-order
explicit Runge-Kutta method, and it controls the size of the residual of a natural interpolant. It uses
iteration to take steps that are longer than the delays.

DDEs of Neutral Type
Delay differential equations of neutral type involve delays in y ′ as well as y:

y′ t = f t, y t , y dy1 , ..., y dyp , y′ dyp1 , ..., y′ dypq .

The delays in the solution must satisfy dyi(t,y) ≤ t. The delays in the first derivative must satisfy
dypj(t,y) < t so that y ′ does not appear on both sides of the equation.

The ddensd function solves DDEs of neutral type by approximating them with DDEs of the form given
for time-dependent and state-dependent delays:

y′ t = f t, y t , y dy1 , ..., y dyp .
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For more information, see Shampine [1].

Evaluating the Solution at Specific Points
Use the deval function and the output from any of the DDE solvers to evaluate the solution at
specific points in the interval of integration. For example, y = deval(sol, 0.5*(sol.x(1) +
sol.x(end))) evaluates the solution at the midpoint of the interval of integration.

History and Initial Values
When you solve a DDE, you approximate the solution on an interval [t0,tf] with t0 < tf. The DDEs show
how y ′(t) depends on values of the solution (and possibly its derivative) at times prior to t. For
example, with constant delays y ′(t0) depends on y(t0 – τ1),…,y(t0 – τk) for positive constants τj.
Because of this, a solution on [t0, tk] depends on values it has at t ≤ t0. You must define these values
with a history function, y(t) = S(t) for t <t0.

Discontinuities in DDEs
If your problem has discontinuities, it is best to communicate them to the solver using an options
structure. To do this, use the ddeset function to create an options structure containing the
discontinuities in your problem.

There are three properties in the options structure that you can use to specify discontinuities;
InitialY, Jumps, and Events. The property you choose depends on the location and nature of the
discontinuities.

Nature of Discontinuity Property Comments
At the initial value t = t0 InitialY Generally the initial value y(t0) is the value

S(t0) returned by the history function,
meaning the solution is continuous at the
initial point. If this is not the case, supply a
different initial value using the InitialY
property.

In the history, i.e., the solution
at t <t0, or in the equation
coefficients for t >t0

Jumps Provide the known locations t of the
discontinuities in a vector as the value of the
Jumps property. Applies only to dde23.
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Nature of Discontinuity Property Comments
State-dependent Events dde23, ddesd, and ddensd use the events

function you supply to locate these
discontinuities. When the solver finds such a
discontinuity, restart the integration to
continue. Specify the solution structure for
the current integration as the history for the
new integration. The solver extends each
element of the solution structure after each
restart so that the final structure provides
the solution for the whole interval of
integration. If the new problem involves a
change in the solution, use the InitialY
property to specify the initial value for the
new integration.

Propagation of Discontinuities
Generally, the first derivative of the solution has a jump at the initial point. This is because the first
derivative of the history function, S(t), generally does not satisfy the DDE at this point. A
discontinuity in any derivative of y(t) propagates into the future at spacings of τ1,…, τk when the
delays are constant. If the delays are not constant, the propagation of discontinuities is more
complicated. For neutral DDEs of the forms in “Constant Delay DDEs” on page 14-2 and “Time-
Dependent and State-Dependent DDEs” on page 14-2, the discontinuity appears in the next higher
order derivative each time it is propagated. In this sense, the solution gets smoother as the
integration proceeds. Solutions of neutral DDEs of the form given in “DDEs of Neutral Type” on page
14-2 are qualitatively different. The discontinuity in the solution does not propagate to a derivative of
higher order. In particular, the typical jump in y ′(t) at t0 propagates as jumps in y ′(t) throughout [t0,
tf].

DDE Examples and Files
Several available example files serve as excellent starting points for most common DDE problems. To
easily explore and run examples, simply use the Differential Equations Examples app. To run this
app, type

odeexamples

To open an individual example file for editing, type

edit exampleFileName.m

To run an example, type

exampleFileName

This table contains a list of the available DDE example files, as well as the solvers and the options
they use.
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Example
File

Solver Used Options
Specified

Description Example Link

ddex1 dde23 — DDE with constant history “DDE with
Constant Delays”
on page 14-6

ddex2 dde23 • 'Jumps' DDE with a discontinuity “Cardiovascular
Model DDE with
Discontinuities” on
page 14-14

ddex3 ddesd — DDE with state-dependent
delays

“DDE with State-
Dependent Delays”
on page 14-10

ddex4 ddensd — Neutral DDE with two
delays

“DDE of Neutral
Type” on page 14-
19

ddex5 ddensd — Neutral DDE with initial
value

“Initial Value DDE
of Neutral Type”
on page 14-23

References
[1] Shampine, L.F. “Dissipative Approximations to Neutral DDEs.” Applied Mathematics &

Computation, Vol. 203, 2008, pp. 641–648.

See Also
dde23 | ddensd | ddesd | ddeset

More About
• “DDE with Constant Delays” on page 14-6
• “DDE with State-Dependent Delays” on page 14-10
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DDE with Constant Delays
This example shows how to use dde23 to solve a system of DDEs (delay differential equations) with
constant delays.

The system of equations is

y1′ t = y1 t − 1
y2′ t = y1 t − 1 + y2 t − 0 . 2
y3′ t = y2 t .

The history function for t ≤ 0 is constant, y1 t = y2 t = y3 t = 1.

The time delays in the equations are only present in y terms, and the delays themselves are
constants, so the equations form a system of constant delay equations.

To solve this system of equations in MATLAB, you need to code the equations, delays, and history
before calling the delay differential equation solver dde23, which is meant for systems with constant
delays. You either can include the required functions as local functions at the end of a file (as done
here), or save them as separate, named files in a directory on the MATLAB path.

Code Delays

First, create a vector to define the delays in the system of equations. This system has two different
delays:

• A delay of 1 in the first component y1 t − 1 .
• A delay of 0.2 in the second component y2 t − 0 . 2 .

dde23 accepts a vector argument for the delays, where each element is the constant delay for one
component.

lags = [1 0.2];

Code Equation

Now, create a function to code the equations. This function should have the signature dydt =
ddefun(t,y,Z), where:

• t is time (independent variable).
• y is the solution (dependent variable).
• Z(:,j) approximates the delay y t − τ j , where the constant delay τ j is given by lags(j).

These inputs are automatically passed to the function by the solver, but the variable names determine
how you code the equations. In this case:

• Z(:,1) y1 t − 1
• Z(:,2) y2 t − 0 . 2

function dydt = ddefun(t,y,Z)
  ylag1 = Z(:,1);
  ylag2 = Z(:,2);
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  dydt = [ylag1(1); 
          ylag1(1)+ylag2(2); 
          y(2)];
end

Note: All functions are included as local functions at the end of the example.

Code Solution History

Next, create a function to define the solution history. The solution history is the solution for times
t ≤ t0.

function s = history(t)
  s = ones(3,1);
end

Solve Equation

Finally, define the interval of integration t0 tf  and solve the DDE using the dde23 solver.

tspan = [0 5];
sol = dde23(@ddefun, lags, @history, tspan);

Plot Solution

The solution structure sol has the fields sol.x and sol.y that contain the internal time steps taken
by the solver and corresponding solutions at those times. (If you need the solution at specific points,
you can use deval to evaluate the solution at the specific points.)

Plot the three solution components against time.

plot(sol.x,sol.y,'-o')
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2','y_3','Location','NorthWest');
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Local Functions

Listed here are the local helper functions that the DDE solver dde23 calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydt = ddefun(t,y,Z) % equation being solved
  ylag1 = Z(:,1);
  ylag2 = Z(:,2);

  dydt = [ylag1(1); 
          ylag1(1)+ylag2(2); 
          y(2)];
end
%-------------------------------------------
function s = history(t) % history function for t <= 0
  s = ones(3,1);
end
%-------------------------------------------

See Also
dde23 | ddensd | ddesd | deval

More About
• “Solving Delay Differential Equations” on page 14-2

14 Delay Differential Equations (DDEs)

14-8



• “DDE with State-Dependent Delays” on page 14-10
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DDE with State-Dependent Delays
This example shows how to use ddesd to solve a system of DDEs (delay differential equations) with
state-dependent delays. This system of DDEs was used as a test problem by Enright and Hayashi [1].

The system of equations is

y1′ t = y2 t ,

y2′ t = − y2 e1− y2 t ⋅ y2 t 2 ⋅ e1− y2 t .

The history functions for t ≤ 0 . 1 are the analytical solutions

y1 t = log t ,

y2 t = 1
t .

The time delays in the equations are only present in y terms. The delays depend only on the state of
the second component y2 t , so the equations form a system of state-dependent delay equations.

To solve this system of equations in MATLAB, you need to code the equations, delays, and history
before calling the delay differential equation solver ddesd, which is meant for systems with state-
dependent delays. You either can include the required functions as local functions at the end of a file
(as done here), or save them as separate, named files in a directory on the MATLAB path.

Code Delays

First, write a function to define the time delays in the system. The only delay present in this system of
equations is in the term−y2 e1− y2 t .

function d = dely(t,y)
d = exp(1 - y(2));
end

Note: All functions are included as local functions at the end of the example.

Code Equation

Now, create a function to code the equations. This function should have the signature dydt =
ddefun(t,y,Z), where:

• t is time (independent variable).
• y is the solution (dependent variable).
• Z(n,j) approximates the delays yn d j , where the delay d j  is given by component j of

dely(t,y).

These inputs are automatically passed to the function by the solver, but the variable names determine
how you code the equations. In this case:

• Z(2,1) y2 e1− y2 t
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function dydt = ddefun(t,y,Z)
dydt = [y(2);
       -Z(2,1)*y(2)^2*exp(1 - y(2))];
end

Code Solution History

Next, create a function to define the solution history. The solution history is the solution for times
t ≤ t0.

function v = history(t) % history function for t < t0
v = [log(t); 
     1./t];
end

Solve Equation

Finally, define the interval of integration t0 tf  and solve the DDE using the ddesd solver.

tspan = [0.1 5];
sol = ddesd(@ddefun, @dely, @history, tspan);

Plot Solution

The solution structure sol has the fields sol.x and sol.y that contain the internal time steps taken
by the solver and corresponding solutions at those times. (If you need the solution at specific points,
you can use deval to evaluate the solution at the specific points.)

Plot the two solution components against time using the history function to calculate the analytical
solution within the integration interval for comparison.

ta = linspace(0.1,5);
ya = history(ta);

plot(ta,ya,sol.x,sol.y,'o')
legend('y_1 exact','y_2 exact','y_1 ddesd','y_2 ddesd')
xlabel('Time t')
ylabel('Solution y')
title('D1 Problem of Enright and Hayashi')

 DDE with State-Dependent Delays

14-11



Local Functions

Listed here are the local helper functions that the DDE solver ddesd calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydt = ddefun(t,y,Z) % equation being solved
dydt = [y(2); 
       -Z(2,1).*y(2)^2.*exp(1 - y(2))];
end
%-------------------------------------------
function d = dely(t,y) % delay for y
d = exp(1 - y(2));
end
%-------------------------------------------
function v = history(t) % history function for t < t0
v = [log(t); 
     1./t];
end
%-------------------------------------------

References

[1] Enright, W.H. and H. Hayashi. “The Evaluation of Numerical Software for Delay Differential
Equations.” In Proceedings of the IFIP TC2/WG2.5 working conference on Quality of numerical
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software: assessment and enhancement. (R.F. Boisvert, ed.). London, UK: Chapman & Hall, Ltd., pp.
179-193.

See Also
dde23 | ddensd | ddesd | deval

More About
• “Solving Delay Differential Equations” on page 14-2
• “Cardiovascular Model DDE with Discontinuities” on page 14-14
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Cardiovascular Model DDE with Discontinuities
This example shows how to use dde23 to solve a cardiovascular model that has a discontinuous
derivative. The example was originally presented by Ottesen [1].

The system of equations is

Pȧ t = − 1
caRPa t + 1

caRPv t + 1
ca

Vstr P a
τ t H t

Ṗv t = 1
cvRPa t − 1

cvR + 1
cvr

Pv t

Ḣ t =
αHTs

1 + γHTp
− βHTp .

The terms for Ts and Tp are variations of the same equation with and without time delay. Pa
τ and Pa

represent the mean arterial pressure with and without time delay, respectively.

Ts = 1

1 +
Pa

τ

αs

βs

Tp = 1

1 +
Pa
αp

−βp
.

This problem has a number of physical parameters:

• Arterial compliance ca = 1 . 55 ml/mmHg
• Venous compliance cv = 519 ml/mmHg
• Peripheral resistance R = 1 . 05 0 . 84 mmHg s/ml
• Venous outflow resistance r = 0 . 068 mmHg s/ml
• Stroke volume Vstr = 67 . 9 77 . 9 ml
• Typical mean arterial pressure P0 = 93 mmHg
• α0 = αs = αp = 93 121 mmHg
• αH = 0 . 84 sec−2

• β0 = βs = βp = 7
• βH = 1 . 17
• γH = 0

The system is heavily influenced by peripheral pressure, which decreases exponentially from
R = 1 . 05 to R = 0 . 84 beginning at t = 600. As a result, the system has a discontinuity in a low-order
derivative at t = 600.

The constant solution history is defined in terms of the physical parameters

14 Delay Differential Equations (DDEs)

14-14



Pa = P0, Pv t = 1
1 + R

r
P0, H t = 1

RVstr
1

1 + r
R

P0 .

To solve this system of equations in MATLAB, you need to code the equations, parameters, delays,
and history before calling the delay differential equation solver dde23, which is meant for systems
with constant time delays. You either can include the required functions as local functions at the end
of a file (as done here), or save them as separate, named files in a directory on the MATLAB path.

Define Physical Parameters

First, define the physical parameters of the problem as fields in a structure.

p.ca     = 1.55;
p.cv     = 519;
p.R      = 1.05;
p.r      = 0.068;
p.Vstr   = 67.9;
p.alpha0 = 93;
p.alphas = 93;
p.alphap = 93;
p.alphaH = 0.84;
p.beta0  = 7;
p.betas  = 7;
p.betap  = 7;
p.betaH  = 1.17;
p.gammaH = 0;

Code Delay

Next, create a variable tau to represent the constant time delay τ in the equations for the terms
Pa

τ t = Pa t − τ .

tau = 4;

Code Equations

Now, create a function to code the equations. This function should have the signature dydt =
ddefun(t,y,Z,p), where:

• t is time (independent variable).
• y is the solution (dependent variable).
• Z(n,j) approximates the delays yn d j , where the delay d j  is given by component j of

dely(t,y).
• p is an optional fourth input used to pass in the values of the parameters.

The first three inputs are automatically passed to the function by the solver, and the variable names
determine how you code the equations. The structure of parameters p is passed to the function when
you call the solver. In this case the delays are represented with:

• Z(:,1) Pa t − τ

function dydt = ddefun(t,y,Z,p)
    if t <= 600
      p.R = 1.05;
    else
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      p.R = 0.21 * exp(600-t) + 0.84;
    end    
    ylag = Z(:,1);
    Patau = ylag(1);
    Paoft = y(1);
    Pvoft = y(2);
    Hoft  = y(3);

    dPadt = - (1 / (p.ca * p.R)) * Paoft ...
            + (1/(p.ca * p.R)) * Pvoft ...
            + (1/p.ca) * p.Vstr * Hoft;

    dPvdt = (1 / (p.cv * p.R)) * Paoft...
            - ( 1 / (p.cv * p.R)...
            + 1 / (p.cv * p.r) ) * Pvoft;

    Ts = 1 / ( 1 + (Patau / p.alphas)^p.betas );
    Tp = 1 / ( 1 + (p.alphap / Paoft)^p.betap );

    dHdt = (p.alphaH * Ts) / (1 + p.gammaH * Tp) ...
           - p.betaH * Tp;

    dydt = [dPadt; dPvdt; dHdt];
end 

Note: All functions are included as local functions at the end of the example.

Code Solution History

Next, create a vector to define the constant solution history for the three components Pa, Pv, and H.
The solution history is the solution for times t ≤ t0.

P0 = 93;
Paval = P0;
Pvval = (1 / (1 + p.R/p.r)) * P0;
Hval = (1 / (p.R * p.Vstr)) * (1 / (1 + p.r/p.R)) * P0;
history = [Paval; Pvval; Hval];

Solve Equation

Use ddeset to specify the presence of the discontinuity at t = 600. Finally, define the interval of
integration t0 tf  and solve the DDE using the dde23 solver. Specify ddefun using an anonymous
function to pass in the structure of parameters, p.

options = ddeset('Jumps',600);
tspan = [0 1000];
sol = dde23(@(t,y,Z) ddefun(t,y,Z,p), tau, history, tspan, options);

Plot Solution

The solution structure sol has the fields sol.x and sol.y that contain the internal time steps taken
by the solver and corresponding solutions at those times. (If you need the solution at specific points,
you can use deval to evaluate the solution at the specific points.)

Plot the third solution component (heart rate) against time.

plot(sol.x,sol.y(3,:))
title('Heart Rate for Baroreflex-Feedback Mechanism.')
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xlabel('Time t')
ylabel('H(t)')

Local Functions

Listed here are the local helper functions that the DDE solver dde23 calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function dydt = ddefun(t,y,Z,p) % equation being solved
    if t <= 600
      p.R = 1.05;
    else
      p.R = 0.21 * exp(600-t) + 0.84;
    end    
    ylag = Z(:,1);
    Patau = ylag(1);
    Paoft = y(1);
    Pvoft = y(2);
    Hoft  = y(3);

    dPadt = - (1 / (p.ca * p.R)) * Paoft ...
            + (1/(p.ca * p.R)) * Pvoft ...
            + (1/p.ca) * p.Vstr * Hoft;

    dPvdt = (1 / (p.cv * p.R)) * Paoft...
            - ( 1 / (p.cv * p.R)...
            + 1 / (p.cv * p.r) ) * Pvoft;
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    Ts = 1 / ( 1 + (Patau / p.alphas)^p.betas );
    Tp = 1 / ( 1 + (p.alphap / Paoft)^p.betap );

    dHdt = (p.alphaH * Ts) / (1 + p.gammaH * Tp) ...
           - p.betaH * Tp;

    dydt = [dPadt; dPvdt; dHdt];
end 

References

[1] Ottesen, J. T. “Modelling of the Baroreflex-Feedback Mechanism with Time-Delay.” J. Math. Biol.
Vol. 36, Number 1, 1997, pp. 41–63.

See Also
dde23 | ddensd | ddesd | deval

More About
• “Solving Delay Differential Equations” on page 14-2
• “DDE of Neutral Type” on page 14-19
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DDE of Neutral Type
This example shows how to use ddensd to solve a neutral DDE (delay differential equation), where
delays appear in derivative terms. The problem was originally presented by Paul [1].

The equation is

y′ t = 1 + y t − 2y t
2

2− y′ t − π .

The history function isy t = cos t  for t ≤ 0.

Since the equation has time delays in a y′ term, the equation is called a neutral DDE. If the time
delays are only present in y terms, then the equation would be a constant or state-dependent DDE,
depending on what form the time delays have.

To solve this equation in MATLAB, you need to code the equation, delays, and history before calling
the delay differential equation solver ddensd. You either can include these as local functions at the
end of a file (as done here), or save them as separate files in a directory on the MATLAB path.

Code Delays

First, write functions to define the delays in the equation. The first term in the equation with a delay
is y t

2 .

function dy = dely(t,y) 
    dy = t/2;
end

The other term in the equation with a delay is y′ t − π .

function dyp = delyp(t,y) 
    dyp = t-pi;
end

In this example, only one delay for y and one delay for y′ are present. If there were more delays, then
you can add them in these same function files, so that the functions return vectors instead of scalars.

Note: All functions are included as local functions at the end of the example.

Code Equation

Now, create a function to code the equation. This function should have the signature yp =
ddefun(t,y,ydel,ypdel), where:

• t is time (independent variable).
• y is the solution (dependent variable).
• ydel contains the delays for y.
• ypdel contains the delays for y′ = dy

dt .

These inputs are automatically passed to the function by the solver, but the variable names determine
how you code the equation. In this case:
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• ydel y t
2

• ypdel y′ t − π

function yp = ddefun(t,y,ydel,ypdel) 
    yp = 1 + y - 2*ydel^2 - ypdel;
end

Code Solution History

Next, create a function to define the solution history. The solution history is the solution for times
t ≤ t0.

function y = history(t)
    y = cos(t);
end

Solve Equation

Finally, define the interval of integration t0 tf  and solve the DDE using the ddensd solver.

tspan = [0 pi];
sol = ddensd(@ddefun, @dely, @delyp, @history, [0,pi]);

Plot Solution

The solution structure sol has the fields sol.x and sol.y that contain the internal time steps taken
by the solver and corresponding solutions at those times. However, you can use deval to evaluate
the solution at the specific points.

Evaluate the solution at 20 equally spaced points between 0 and pi.

tn = linspace(0,pi,20);
yn = deval(sol,tn);

Plot the calculated solution and history against the analytical solution.

th = linspace(-pi,0);
yh = history(th);
ta = linspace(0,pi);
ya = cos(ta);

plot(th,yh,tn,yn,'o',ta,ya)
legend('History','Numerical','Analytical','Location','NorthWest')
xlabel('Time t')
ylabel('Solution y')
title('Example of Paul with 1 Equation and 2 Delay Functions')
axis([-3.5 3.5 -1.5 1.5])
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Local Functions

Listed here are the local helper functions that the DDE solver ddensd calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function yp = ddefun(t,y,ydel,ypdel) % equation being solved
    yp = 1 + y - 2*ydel^2 - ypdel;
end
%-------------------------------------------
function dy = dely(t,y) % delay for y
    dy = t/2;
end
%-------------------------------------------
function dyp = delyp(t,y) % delay for y'
    dyp = t-pi;
end
%-------------------------------------------
function y = history(t) % history function for t < 0
    y = cos(t);
end
%-------------------------------------------
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[1] Paul, C.A.H. “A Test Set of Functional Differential Equations.” Numerical Analysis Reports. No.
243. Manchester, UK: Math Department, University of Manchester, 1994.

See Also
dde23 | ddensd | ddesd | deval

More About
• “Solving Delay Differential Equations” on page 14-2
• “Initial Value DDE of Neutral Type” on page 14-23
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Initial Value DDE of Neutral Type
This example shows how to use ddensd to solve a system of initial value DDEs (delay differential
equations) with time-dependent delays. The example was originally presented by Jackiewicz [1].

The equation is

y′ t = 2 cos 2t y t
2

2 cos t
+ log y′ t

2 − log 2 cos t − sin t .

This equation is an initial value DDE because the time delays are zero at t0. Therefore, a solution
history is unnecessary to calculate a solution, only the initial values are needed:

y 0 = 1,

y′ 0 = s .

s is the solution of 2 + log s − log 2 = 0. The values of s that satisfy this equation are s1 = 2 and
s2 = 0 . 4063757399599599.

Since the time delays in the equations are present in a y′ term, this equation is called a neutral DDE.

To solve this equation in MATLAB, you need to code the equation and delays before calling the delay
differential equation solver ddensd, which is the solver for neutral equations. You either can include
the required functions as local functions at the end of a file (as done here), or save them as separate
files in a directory on the MATLAB path.

Code Delays

First, write an anonymous function to define the delays in the equation. Since both y and y′ have
delays of the form t

2 , only one function definition is required. This delay function is later passed to the
solver twice, once to indicate the delay for y and once for y′.

delay = @(t,y) t/2; 

Code Equation

Now, create a function to code the equation. This function should have the signature yp =
ddefun(t,y,ydel,ypdel), where:

• t is time (independent variable).
• y is the solution (dependent variable).
• ydel contains the delays for y.
• ypdel contains the delays for y′ = dy

dt .

These inputs are automatically passed to the function by the solver, but the variable names determine
how you code the equation. In this case:

• ydel y t
2

• ypdel  y′ t
2  
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function yp = ddefun(t,y,ydel,ypdel) 
   yp = 2*cos(2*t)*ydel^(2*cos(t)) + log(ypdel) - log(2*cos(t)) - sin(t);
end

Note: All functions are included as local functions at the end of the example.

Solve Equation

Finally, define the interval of integration t0 tf  and the initial values, and then solve the DDE using
the ddensd solver. Pass the initial values to the solver by specifying them in a cell array in the fourth
input argument.

tspan = [0 0.1];
y0 = 1;
s1 = 2;
sol1 = ddensd(@ddefun, delay, delay, {y0,s1}, tspan);

Solve the equation a second time, this time using the alternate value of s for the initial condition.

s2 = 0.4063757399599599;
sol2 = ddensd(@ddefun, delay, delay, {y0,s2}, tspan);

Plot Solution

The solution structures sol1 and sol2 have the fields x and y that contain the internal time steps
taken by the solver and corresponding solutions at those times. However, you can use deval to
evaluate the solution at the specific points.

Plot the two solutions to compare results.

plot(sol1.x,sol1.y,sol2.x,sol2.y);
legend('y''(0) = 2','y''(0) = .40637..','Location','NorthWest');
xlabel('Time t');
ylabel('Solution y');
title('Two Solutions of Jackiewicz''s Initial-Value NDDE');
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Local Functions

Listed here are the local helper functions that the DDE solver ddensd calls to calculate the solution.
Alternatively, you can save these functions as their own files in a directory on the MATLAB path.

function yp = ddefun(t,y,ydel,ypdel) 
   yp = 2*cos(2*t)*ydel^(2*cos(t)) + log(ypdel) - log(2*cos(t)) - sin(t);
end

References

[1] Jackiewicz, Z. “One step Methods of any Order for Neutral Functional Differential Equations.”
SIAM Journal on Numerical Analysis. Vol. 21, Number 3. 1984. pp. 486–511.

See Also
dde23 | ddensd | ddesd | deval

More About
• “Solving Delay Differential Equations” on page 14-2
• “DDE of Neutral Type” on page 14-19
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Numerical Integration

• “Integration to Find Arc Length” on page 15-2
• “Complex Line Integrals” on page 15-3
• “Singularity on Interior of Integration Domain” on page 15-5
• “Analytic Solution to Integral of Polynomial” on page 15-7
• “Integration of Numeric Data” on page 15-8
• “Calculate Tangent Plane to Surface” on page 15-12
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Integration to Find Arc Length
This example shows how to parametrize a curve and compute the arc length using integral.

Consider the curve parameterized by the equations

x(t) = sin(2t),  y(t) = cos(t),  z(t) = t,

where t ∊ [0,3π].

Create a three-dimensional plot of this curve.

t = 0:0.1:3*pi;
plot3(sin(2*t),cos(t),t)

The arc length formula says the length of the curve is the integral of the norm of the derivatives of
the parameterized equations.

∫
0

3π
4cos2 2t + sin2 t + 1 dt .

Define the integrand as an anonymous function.

f = @(t) sqrt(4*cos(2*t).^2 + sin(t).^2 + 1);

Integrate this function with a call to integral.

len = integral(f,0,3*pi)

len =
  17.2220

The length of this curve is about 17.2.

See Also
integral

More About
• “Create Function Handle”
• “Singularity on Interior of Integration Domain” on page 15-5
• “Integration of Numeric Data” on page 15-8
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Complex Line Integrals
This example shows how to calculate complex line integrals using the 'Waypoints' option of the
integral function. In MATLAB®, you use the 'Waypoints' option to define a sequence of straight
line paths from the first limit of integration to the first waypoint, from the first waypoint to the
second, and so forth, and finally from the last waypoint to the second limit of integration.

Define the Integrand with an Anonymous Function

Integrate

∮C ez

z dz

where C is a closed contour that encloses the simple pole of ez/z at the origin.

Define the integrand with an anonymous function.

fun = @(z) exp(z)./z;

Integrate Without Using Waypoints

You can evaluate contour integrals of complex-valued functions with a parameterization. In general, a
contour is specified, and then differentiated and used to parameterize the original integrand. In this
case, specify the contour as the unit circle, but in all cases, the result is independent of the contour
chosen.

g = @(theta) cos(theta) + 1i*sin(theta);
gprime = @(theta) -sin(theta) + 1i*cos(theta);
q1 = integral(@(t) fun(g(t)).*gprime(t),0,2*pi)

q1 = -0.0000 + 6.2832i

This method of parameterizing, although reliable, can be difficult and time consuming since a
derivative must be calculated before the integration is performed. Even for simple functions, you
need to write several lines of code to obtain the correct result. Since the result is the same with any
closed contour that encloses the pole (in this case, the origin), instead you can use the 'Waypoints'
option of integral to construct a square or triangular path that encloses the pole.

Integrate Along a Contour That Encloses No Poles

If any limit of integration or element of the waypoints vector is complex, then integral performs the
integration over a sequence of straight line paths in the complex plane. The natural direction around
a contour is counterclockwise; specifying a clockwise contour is akin to multiplying by -1. Specify the
contour in such a way that it encloses a single functional singularity. If you specify a contour that
encloses no poles, then Cauchy's integral theorem guarantees that the value of the closed-loop
integral is zero.

To see this, integrate fun around a square contour away from the origin. Use equal limits of
integration to form a closed contour.

C = [2+i 2+2i 1+2i];
q = integral(fun,1+i,1+i,'Waypoints',C)

q = 0.0000e+00 + 2.2204e-16i
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The result is on the order of eps and effectively zero.

Integrate Along a Contour with a Pole in the Interior

Specify a square contour that completely encloses the pole at the origin, and then integrate.

C = [1+i -1+i -1-i 1-i];
q2 = integral(fun,1,1,'Waypoints',C)

q2 = -0.0000 + 6.2832i

This result agrees with the q1 calculated above, but uses much simpler code.

The exact answer for this problem is 2πi.

2*pi*i

ans = 0.0000 + 6.2832i

See Also
integral

More About
• “Create Function Handle”
• “Singularity on Interior of Integration Domain” on page 15-5
• “Integration of Numeric Data” on page 15-8
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Singularity on Interior of Integration Domain
This example shows how to split the integration domain to place a singularity on the boundary.

Define the Integrand with an Anonymous Function

The integrand of the complex-valued integral

∫−1

1∫−1

1 1
x + y dx dy

has a singularity when x = y = 0 and is, in general, singular on the line y = -x.

Define this integrand with an anonymous function.

fun = @(x,y) ((x+y).^(-1/2));

Integrate Over a Square

Integrate fun over a square domain specified by −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.

format long
q = integral2(fun,-1,1,-1,1)

Warning: Non-finite result. The integration was unsuccessful. Singularity likely.

q = 
                NaN +               NaNi

If there are singular values in the interior of the integration region, the integration fails to converge
and returns a warning.

Split the Integration Domain into Two Triangles

You can redefine the integral by splitting the integration domain into complementary pieces and
adding the smaller integrations together. Avoid integration errors and warnings by placing
singularities on the boundary of the domain. In this case, you can split the square integration region
into two triangles along the singular line y = -x and add the results.

q1 = integral2(fun,-1,1,-1,@(x)-x);
q2 = integral2(fun,-1,1,@(x)-x,1);
q = q1 + q2

q = 
  3.771236166328258 - 3.771236166328256i

The integration succeeds when the singular values are on the boundary.

The exact value of this integral is

8 2
3 1− i

8/3*sqrt(2)*(1-i)
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ans = 
  3.771236166328253 - 3.771236166328253i

See Also
integral | integral2 | integral3

More About
• “Create Function Handle”
• “Complex Line Integrals” on page 15-3
• “Integration of Numeric Data” on page 15-8
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Analytic Solution to Integral of Polynomial
This example shows how to use the polyint function to integrate polynomial expressions
analytically. Use this function to evaluate indefinite integral expressions of polynomials.

Define the Problem

Consider the real-valued indefinite integral,

∫ 4x5− 2x3 + x + 4 dx

The integrand is a polynomial, and the analytic solution is

2
3x6− 1

2x4 + 1
2x2 + 4x + k

where k is the constant of integration. Since the limits of integration are unspecified, the integral
function family is not well-suited to solving this problem.

Express the Polynomial with a Vector

Create a vector whose elements represent the coefficients for each descending power of x.

p = [4 0 -2 0 1 4];

Integrate the Polynomial Analytically

Integrate the polynomial analytically using the polyint function. Specify the constant of integration
with the second input argument.

k = 2;
I = polyint(p,k)

I = 1×7

    0.6667         0   -0.5000         0    0.5000    4.0000    2.0000

The output is a vector of coefficients for descending powers of x. This result matches the analytic
solution above, but has a constant of integration k = 2.

See Also
polyint | polyval

More About
• “Singularity on Interior of Integration Domain” on page 15-5
• “Integration of Numeric Data” on page 15-8
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Integration of Numeric Data
This example shows how to integrate a set of discrete velocity data numerically to approximate the
distance traveled. The integral family only accepts function handles as inputs, so those functions
cannot be used with discrete data sets. Use trapz or cumtrapz when a functional expression is not
available for integration.

View the Velocity Data

Consider the following velocity data and corresponding time data.

vel = [0 .45 1.79 4.02 7.15 11.18 16.09 21.90 29.05 29.05 ...
29.05 29.05 29.05 22.42 17.9 17.9 17.9 17.9 14.34 11.01 ...
8.9 6.54 2.03 0.55 0];
time = 0:24;

This data represents the velocity of an automobile (in m/s) taken at 1 s intervals over 24 s.

Plot the velocity data points and connect each point with a straight line.

figure
plot(time,vel,'-*')
grid on
title('Automobile Velocity')
xlabel('Time (s)')
ylabel('Velocity (m/s)')

15 Numerical Integration

15-8



The slope is positive during periods of acceleration, zero during periods of constant velocity, and
negative during periods of deceleration. At time t = 0, the vehicle is at rest with vel(1) = 0 m/s.
The vehicle accelerates until reaching a maximum velocity at t = 8 s of vel(9) = 29.05 m/s and
maintains this velocity for 4 s. It then decelerates to vel(14) = 17.9 m/s for 3 s and eventually
back down to rest. Since this velocity curve has multiple discontinuities, a single continuous function
cannot describe it.

Calculate the Total Distance Traveled

trapz performs discrete integration by using the data points to create trapezoids, so it is well suited
to handling data sets with discontinuities. This method assumes linear behavior between the data
points, and accuracy may be reduced when the behavior between data points is nonlinear. To
illustrate, you can draw trapezoids onto the graph using the data points as vertices.

xverts = [time(1:end-1); time(1:end-1); time(2:end); time(2:end)];
yverts = [zeros(1,24); vel(1:end-1); vel(2:end); zeros(1,24)];
p = patch(xverts,yverts,'b','LineWidth',1.5);

trapz calculates the area under a set of discrete data by breaking the region into trapezoids. The
function then adds the area of each trapezoid to compute the total area.

Calculate the total distance traveled by the automobile (corresponding to the shaded area) by
integrating the velocity data numerically using trapz. By default, the spacing between points is
assumed to be 1 if you use the syntax trapz(Y). However, you can specify a different uniform or
nonuniform spacing X with the syntax trapz(X,Y). In this case, the spacing between readings in the
time vector is 1, so it is acceptable to use the default spacing.

 Integration of Numeric Data

15-9



distance = trapz(vel)

distance = 345.2200

The distance traveled by the automobile in t = 24 s is about 345.22 m.

Plot Cumulative Distance Traveled

The cumtrapz function is closely related to trapz. While trapz returns only the final integration
value, cumtrapz also returns intermediate values in a vector.

Calculate the cumulative distance traveled and plot the result.

cdistance = cumtrapz(vel);
T = table(time',cdistance','VariableNames',{'Time','CumulativeDistance'})

T=25×2 table
    Time    CumulativeDistance
    ____    __________________

      0                0      
      1            0.225      
      2            1.345      
      3             4.25      
      4            9.835      
      5               19      
      6           32.635      
      7            51.63      
      8           77.105      
      9           106.15      
     10            135.2      
     11           164.25      
     12           193.31      
     13           219.04      
     14            239.2      
     15            257.1      
      ⋮

plot(cdistance)
title('Cumulative Distance Traveled Per Second')
xlabel('Time (s)')
ylabel('Distance (m)')

15 Numerical Integration

15-10



See Also
cumtrapz | integral | trapz

More About
• “Singularity on Interior of Integration Domain” on page 15-5
• “Analytic Solution to Integral of Polynomial” on page 15-7
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Calculate Tangent Plane to Surface
This example shows how to approximate gradients of a function by finite differences. It then shows
how to plot a tangent plane to a point on the surface by using these approximated gradients.

Create the function f (x, y) = x2 + y2 using a function handle.

f = @(x,y) x.^2 + y.^2;

Approximate the partial derivatives of f (x, y) with respect to x and y by using the gradient function.
Choose a finite difference length that is the same as the mesh size.

[xx,yy] = meshgrid(-5:0.25:5);
[fx,fy] = gradient(f(xx,yy),0.25);

The tangent plane to a point on the surface, P = (x0, y0, f (x0, y0)), is given by

z = f (x0, y0) +
∂ f (x0, y0)

∂x x− x0 +
∂ f (x0, y0)

∂y y − y0 .

The fx and fy matrices are approximations to the partial derivatives ∂ f
∂x  and ∂ f

∂y . The point of interest
in this example, where the tangent plane meets the functional surface, is (x0,y0) = (1,2). The
function value at this point of interest is f(1,2) = 5.

To approximate the tangent plane z you need to find the value of the derivatives at the point of
interest. Obtain the index of that point, and find the approximate derivatives there.

x0 = 1;
y0 = 2;
t = (xx == x0) & (yy == y0);
indt = find(t);
fx0 = fx(indt);
fy0 = fy(indt);

Create a function handle with the equation of the tangent plane z.

z = @(x,y) f(x0,y0) + fx0*(x-x0) + fy0*(y-y0);

Plot the original function f (x, y), the point P, and a piece of plane z that is tangent to the function at
P.

surf(xx,yy,f(xx,yy),'EdgeAlpha',0.7,'FaceAlpha',0.9)
hold on
surf(xx,yy,z(xx,yy))
plot3(1,2,f(1,2),'r*')
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View a side profile.

view(-135,9)
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See Also
gradient

More About
• “Create Function Handle”
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Fourier Transforms

• “Fourier Transforms” on page 16-2
• “Basic Spectral Analysis” on page 16-8
• “Polynomial Interpolation Using FFT” on page 16-14
• “2-D Fourier Transforms” on page 16-17
• “FFT for Spectral Analysis” on page 16-21
• “Square Wave from Sine Waves” on page 16-24
• “Analyzing Cyclical Data with FFT” on page 16-29
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Fourier Transforms
The Fourier transform is a mathematical formula that relates a signal sampled in time or space to the
same signal sampled in frequency. In signal processing, the Fourier transform can reveal important
characteristics of a signal, namely, its frequency components.

The Fourier transform is defined for a vector x with n uniformly sampled points by

yk + 1 = ∑
j = 0

n− 1
ω jkx j + 1 .

ω = e−2πi/n is one of n complex roots of unity where i is the imaginary unit. For x and y, the indices j
and k range from 0 to n− 1.

The fft function in MATLAB® uses a fast Fourier transform algorithm to compute the Fourier
transform of data. Consider a sinusoidal signal x that is a function of time t with frequency
components of 15 Hz and 20 Hz. Use a time vector sampled in increments of 1

50  of a second over a
period of 10 seconds.

t = 0:1/50:10-1/50;                     
x = sin(2*pi*15*t) + sin(2*pi*20*t);
plot(t,x)

Compute the Fourier transform of the signal, and create the vector f that corresponds to the signal's
sampling in frequency space.
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y = fft(x);     
f = (0:length(y)-1)*50/length(y);

When you plot the magnitude of the signal as a function of frequency, the spikes in magnitude
correspond to the signal's frequency components of 15 Hz and 20 Hz.

plot(f,abs(y))
title('Magnitude')

The transform also produces a mirror copy of the spikes, which correspond to the signal's negative
frequencies. To better visualize this periodicity, you can use the fftshift function, which performs a
zero-centered, circular shift on the transform.

n = length(x);                         
fshift = (-n/2:n/2-1)*(50/n);
yshift = fftshift(y);
plot(fshift,abs(yshift))
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Noisy Signals

In scientific applications, signals are often corrupted with random noise, disguising their frequency
components. The Fourier transform can process out random noise and reveal the frequencies. For
example, create a new signal, xnoise, by injecting Gaussian noise into the original signal, x.

rng('default')
xnoise = x + 2.5*randn(size(t));

Signal power as a function of frequency is a common metric used in signal processing. Power is the
squared magnitude of a signal's Fourier transform, normalized by the number of frequency samples.
Compute and plot the power spectrum of the noisy signal centered at the zero frequency. Despite
noise, you can still make out the signal's frequencies due to the spikes in power.

ynoise = fft(xnoise);
ynoiseshift = fftshift(ynoise);    
power = abs(ynoiseshift).^2/n; 
plot(fshift,power)
title('Power')
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Computational Efficiency

Using the Fourier transform formula directly to compute each of the n elements of y requires on the
order of n2 floating-point operations. The fast Fourier transform algorithm requires only on the order
of nlogn operations to compute. This computational efficiency is a big advantage when processing
data that has millions of data points. Many specialized implementations of the fast Fourier transform
algorithm are even more efficient when n is a power of 2.

Consider audio data collected from underwater microphones off the coast of California. This data can
be found in a library maintained by the Cornell University Bioacoustics Research Program. Load and
format a subset of the data in bluewhale.au, which contains a Pacific blue whale vocalization. You
can use the command sound(x,fs) to listen to the entire audio file.

whaleFile = 'bluewhale.au';
[x,fs] = audioread(whaleFile);
whaleMoan = x(2.45e4:3.10e4);
t = 10*(0:1/fs:(length(whaleMoan)-1)/fs);

plot(t,whaleMoan)
xlabel('Time (seconds)')
ylabel('Amplitude')
xlim([0 t(end)])
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Specify a new signal length that is the next power of 2 greater than the original length. Then, use fft
to compute the Fourier transform using the new signal length. fft automatically pads the data with
zeros to increase the sample size. This padding can make the transform computation significantly
faster, particularly for sample sizes with large prime factors.

m = length(whaleMoan); 
n = pow2(nextpow2(m));
y = fft(whaleMoan,n);        

Plot the power spectrum of the signal. The plot indicates that the moan consists of a fundamental
frequency around 17 Hz and a sequence of harmonics, where the second harmonic is emphasized.

f = (0:n-1)*(fs/n)/10; % frequency vector
power = abs(y).^2/n;   % power spectrum      
plot(f(1:floor(n/2)),power(1:floor(n/2)))
xlabel('Frequency')
ylabel('Power')
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See Also
ifft | fft2 | fftn | fftw | fft | fftshift | nextpow2

Related Examples
• “2-D Fourier Transforms” on page 16-17
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Basic Spectral Analysis
The Fourier transform is a tool for performing frequency and power spectrum analysis of time-domain
signals.

Spectral Analysis Quantities
Spectral analysis studies the frequency spectrum contained in discrete, uniformly sampled data. The
Fourier transform is a tool that reveals frequency components of a time- or space-based signal by
representing it in frequency space. The following table lists common quantities used to characterize
and interpret signal properties. To learn more about the Fourier transform, see “Fourier Transforms”
on page 16-2.

Quantity Description
x Sampled data
n = length(x) Number of samples
fs Sample frequency (samples per unit time or space)
dt = 1/fs Time or space increment per sample
t = (0:n-1)/fs Time or space range for data
y = fft(x) Discrete Fourier transform of data (DFT)
abs(y) Amplitude of the DFT
(abs(y).^2)/n Power of the DFT
fs/n Frequency increment
f = (0:n-1)*(fs/n) Frequency range
fs/2 Nyquist frequency (midpoint of frequency range)

Noisy Signal
The Fourier transform can compute the frequency components of a signal that is corrupted by
random noise.

Create a signal with component frequencies at 15 Hz and 40 Hz, and inject random Gaussian noise.

rng('default')
fs = 100;                                % sample frequency (Hz)
t = 0:1/fs:10-1/fs;                      % 10 second span time vector
x = (1.3)*sin(2*pi*15*t) ...             % 15 Hz component
  + (1.7)*sin(2*pi*40*(t-2)) ...         % 40 Hz component
  + 2.5*randn(size(t));                  % Gaussian noise;

The Fourier transform of the signal identifies its frequency components. In MATLAB®, the fft
function computes the Fourier transform using a fast Fourier transform algorithm. Use fft to
compute the discrete Fourier transform of the signal.

y = fft(x);

Plot the power spectrum as a function of frequency. While noise disguises a signal's frequency
components in time-based space, the Fourier transform reveals them as spikes in power.
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n = length(x);          % number of samples
f = (0:n-1)*(fs/n);     % frequency range
power = abs(y).^2/n;    % power of the DFT

plot(f,power)
xlabel('Frequency')
ylabel('Power')

In many applications, it is more convenient to view the power spectrum centered at 0 frequency
because it better represents the signal's periodicity. Use the fftshift function to perform a circular
shift on y, and plot the 0-centered power.

y0 = fftshift(y);         % shift y values
f0 = (-n/2:n/2-1)*(fs/n); % 0-centered frequency range
power0 = abs(y0).^2/n;    % 0-centered power

plot(f0,power0)
xlabel('Frequency')
ylabel('Power')
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Audio Signal
You can use the Fourier transform to analyze the frequency spectrum of audio data.

The file bluewhale.au contains audio data from a Pacific blue whale vocalization recorded by
underwater microphones off the coast of California. The file is from the library of animal vocalizations
maintained by the Cornell University Bioacoustics Research Program.

Because blue whale calls are so low, they are barely audible to humans. The time scale in the data is
compressed by a factor of 10 to raise the pitch and make the call more clearly audible. Read and plot
the audio data. You can use the command sound(x,fs) to listen to the audio.

whaleFile = 'bluewhale.au';
[x,fs] = audioread(whaleFile);

plot(x)
xlabel('Sample Number')
ylabel('Amplitude')
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The first sound is a "trill" followed by three "moans". This example analyzes a single moan. Specify
new data that approximately consists of the first moan, and correct the time data to account for the
factor-of-10 speed-up. Plot the truncated signal as a function of time.

moan = x(2.45e4:3.10e4);
t = 10*(0:1/fs:(length(moan)-1)/fs);

plot(t,moan)
xlabel('Time (seconds)')
ylabel('Amplitude')
xlim([0 t(end)])
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The Fourier transform of the data identifies frequency components of the audio signal. In some
applications that process large amounts of data with fft, it is common to resize the input so that the
number of samples is a power of 2. This can make the transform computation significantly faster,
particularly for sample sizes with large prime factors. Specify a new signal length n that is a power of
2, and use the fft function to compute the discrete Fourier transform of the signal. fft
automatically pads the original data with zeros to increase the sample size.

m = length(moan);       % original sample length
n = pow2(nextpow2(m));  % transform length
y = fft(moan,n);        % DFT of signal

Adjust the frequency range due to the speed-up factor, and compute and plot the power spectrum of
the signal. The plot indicates that the moan consists of a fundamental frequency around 17 Hz and a
sequence of harmonics, where the second harmonic is emphasized.

f = (0:n-1)*(fs/n)/10;
power = abs(y).^2/n;      

plot(f(1:floor(n/2)),power(1:floor(n/2)))
xlabel('Frequency')
ylabel('Power')
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See Also
ifft | fft2 | fftn | fft | fftshift | nextpow2

Related Examples
• “Fourier Transforms” on page 16-2
• “2-D Fourier Transforms” on page 16-17
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Polynomial Interpolation Using FFT
Use the fast Fourier transform (FFT) to estimate the coefficients of a trigonometric polynomial that
interpolates a set of data.

FFT in Mathematics
The FFT algorithm is associated with applications in signal processing, but it can also be used more
generally as a fast computational tool in mathematics. For example, coefficients ci of an nth degree
polynomial c1xn + c2xn− 1 + ... + cnx + cn + 1 that interpolates a set of data are commonly computed by
solving a straightforward system of linear equations. While studying asteroid orbits in the early 19th
century, Carl Friedrich Gauss discovered a mathematical shortcut for computing the coefficients of a
polynomial interpolant by splitting the problem up into smaller subproblems and combining the
results. His method was equivalent to estimating the discrete Fourier transform of his data.

Interpolate Asteroid Data
In a paper by Gauss, he describes an approach to estimating the orbit of the Pallas asteroid. He starts
with the following twelve 2-D positional data points x and y.

x = 0:30:330;
y = [408 89 -66 10 338 807 1238 1511 1583 1462 1183 804];
plot(x,y,'ro')
xlim([0 360])
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Gauss models the asteroid's orbit with a trigonometric polynomial of the following form.

y = a0 + a1cos(2π(x/360)) + b1sin(2π(x/360))
a2cos(2π(2x/360)) + b2sin(2π(2x/360))
⋯
a5cos(2π(5x/360)) + b5sin(2π(5x/360))
a6cos(2π(6x/360))

Use fft to compute the coefficients of the polynomial.

m = length(y);
n = floor((m+1)/2);
z = fft(y)/m;

a0 = z(1); 
an = 2*real(z(2:n));
a6 = z(n+1);
bn = -2*imag(z(2:n));

Plot the interpolating polynomial over the original data points.

hold on
px = 0:0.01:360;
k = 1:length(an);
py = a0 + an*cos(2*pi*k'*px/360) ...
        + bn*sin(2*pi*k'*px/360) ...
        + a6*cos(2*pi*6*px/360); 

plot(px,py)
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See Also
fft

Related Examples
• “Fourier Transforms” on page 16-2
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2-D Fourier Transforms
The fft2 function transforms 2-D data into frequency space. For example, you can transform a 2-D
optical mask to reveal its diffraction pattern.

Two-Dimensional Fourier Transform
The following formula defines the discrete Fourier transform Y of an m-by-n matrix X.

Yp + 1, q + 1 = ∑
j = 0

m− 1
∑

k = 0

n− 1
ωm

jpωn
kqX j + 1, k + 1

ωm and ωn are complex roots of unity defined by the following equations.

ωm = e−2πi/m

ωn = e−2πi/n

i is the imaginary unit, p and j are indices that run from 0 to m–1, and q and k are indices that run
from 0 to n–1. The indices for X and Y are shifted by 1 in this formula to reflect matrix indices in
MATLAB.

Computing the 2-D Fourier transform of X is equivalent to first computing the 1-D transform of each
column of X, and then taking the 1-D transform of each row of the result. In other words, the
command fft2(X) is equivalent to Y = fft(fft(X).').'.

2-D Diffraction Pattern
In optics, the Fourier transform can be used to describe the diffraction pattern produced by a plane
wave incident on an optical mask with a small aperture [1]. This example uses the fft2 function on
an optical mask to compute its diffraction pattern.

Create a logical array that defines an optical mask with a small, circular aperture.

n = 2^10;                 % size of mask
M = zeros(n);
I = 1:n; 
x = I-n/2;                % mask x-coordinates 
y = n/2-I;                % mask y-coordinates
[X,Y] = meshgrid(x,y);    % create 2-D mask grid
R = 10;                   % aperture radius
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
M(A) = 1;                 % set mask elements inside aperture to 1
imagesc(M)                % plot mask
axis image
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Use fft2 to compute the 2-D Fourier transform of the mask, and use the fftshift function to
rearrange the output so that the zero-frequency component is at the center. Plot the resulting
diffraction pattern frequencies. Blue indicates small amplitudes and yellow indicates large
amplitudes.

DP = fftshift(fft2(M));
imagesc(abs(DP))
axis image
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To enhance the details of regions with small amplitudes, plot the 2-D logarithm of the diffraction
pattern. Very small amplitudes are affected by numerical round-off error, and the rectangular grid
causes radial asymmetry.

imagesc(abs(log2(DP)))
axis image
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See Also
fft | fft2 | fftn | fftshift | ifft2

Related Examples
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FFT for Spectral Analysis
This example shows the use of the FFT function for spectral analysis. A common use of FFT's is to
find the frequency components of a signal buried in a noisy time domain signal.

First create some data. Consider data sampled at 1000 Hz. Start by forming a time axis for our data,
running from t=0 until t=.25 in steps of 1 millisecond. Then form a signal, x, containing sine waves at
50 Hz and 120 Hz.

t = 0:.001:.25;
x = sin(2*pi*50*t) + sin(2*pi*120*t);

Add some random noise with a standard deviation of 2 to produce a noisy signal y. Take a look at this
noisy signal y by plotting it.

y = x + 2*randn(size(t));
plot(y(1:50))
title('Noisy time domain signal')

Clearly, it is difficult to identify the frequency components from looking at this signal; that's why
spectral analysis is so popular.

Finding the discrete Fourier transform of the noisy signal y is easy; just take the fast-Fourier
transform (FFT).

Y = fft(y,251);
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Compute the power spectral density, a measurement of the energy at various frequencies, using the
complex conjugate (CONJ). Form a frequency axis for the first 127 points and use it to plot the result.
(The remainder of the points are symmetric.)

Pyy = Y.*conj(Y)/251;
f = 1000/251*(0:127);
plot(f,Pyy(1:128))
title('Power spectral density')
xlabel('Frequency (Hz)')

Zoom in and plot only up to 200 Hz. Notice the peaks at 50 Hz and 120 Hz. These are the frequencies
of the original signal.

plot(f(1:50),Pyy(1:50))
title('Power spectral density')
xlabel('Frequency (Hz)')
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Square Wave from Sine Waves
This example shows how the Fourier series expansion for a square wave is made up of a sum of odd
harmonics.

Start by forming a time vector running from 0 to 10 in steps of 0.1, and take the sine of all the points.
Plot this fundamental frequency.

t = 0:.1:10;
y = sin(t);
plot(t,y);

Next add the third harmonic to the fundamental, and plot it.

y = sin(t) + sin(3*t)/3;
plot(t,y);
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Now use the first, third, fifth, seventh, and ninth harmonics.

y = sin(t) + sin(3*t)/3 + sin(5*t)/5 + sin(7*t)/7 + sin(9*t)/9;
plot(t,y);
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For a finale, go from the fundamental all the way to the 19th harmonic, creating vectors of
successively more harmonics, and saving all intermediate steps as the rows of a matrix.

Plot the vectors on the same figure to show the evolution of the square wave. Note that the Gibbs
effect says it will never quite get there.

t = 0:.02:3.14;
y = zeros(10,length(t));
x = zeros(size(t));
for k = 1:2:19
   x = x + sin(k*t)/k;
   y((k+1)/2,:) = x;
end
plot(y(1:2:9,:)')
title('The building of a square wave: Gibbs'' effect')

16 Fourier Transforms

16-26



Here is a 3-D surface representing the gradual transformation of a sine wave into a square wave.

surf(y);
shading interp
axis off ij
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Analyzing Cyclical Data with FFT
You can use the Fourier transform to analyze variations in data, such as an event in nature over a
period time.

For almost 300 years, astronomers have tabulated the number and size of sunspots using the Zurich
sunspot relative number. Plot the Zurich number over approximately the years 1700 to 2000.

load sunspot.dat
year = sunspot(:,1);
relNums = sunspot(:,2);
plot(year,relNums)
xlabel('Year')
ylabel('Zurich Number')
title('Sunspot Data')

To take a closer look at the cyclical nature of sunspot activity, plot the first 50 years of data.

plot(year(1:50),relNums(1:50),'b.-');
xlabel('Year')
ylabel('Zurich Number')
title('Sunspot Data')
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The Fourier transform is a fundamental tool in signal processing that identifies frequency components
in data. Using the fft function, take the Fourier transform of the Zurich data. Remove the first
element of the output, which stores the sum of the data. Plot the remainder of the output, which
contains a mirror image of complex Fourier coefficients about the real axis.

y = fft(relNums);
y(1) = [];
plot(y,'ro')
xlabel('real(y)')
ylabel('imag(y)')
title('Fourier Coefficients')
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Fourier coefficients on their own are difficult to interpret. A more meaningful measure of the
coefficients is their magnitude squared, which is a measure of power. Since half of the coefficients are
repeated in magnitude, you only need to compute the power on one half of the coefficients. Plot the
power spectrum as a function of frequency, measured in cycles per year.

n = length(y);
power = abs(y(1:floor(n/2))).^2; % power of first half of transform data
maxfreq = 1/2;                   % maximum frequency
freq = (1:n/2)/(n/2)*maxfreq;    % equally spaced frequency grid
plot(freq,power)
xlabel('Cycles/Year')
ylabel('Power')
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Maximum sunspot activity happens less frequently than once per year. For a view of the cyclical
activity that is easier to interpret, plot power as a function of period, measured in years per cycle.
The plot reveals that sunspot activity peaks about once every 11 years.

period = 1./freq;
plot(period,power);
xlim([0 50]); %zoom in on max power
xlabel('Years/Cycle')
ylabel('Power')
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See Also
fft | fft2 | fftw

Related Examples
• “Fourier Transforms” on page 16-2
• “2-D Fourier Transforms” on page 16-17
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